Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
Assunto da revista
País de afiliação
Intervalo de ano de publicação
1.
Ecol Appl ; 32(7): e2650, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-35538738

RESUMO

Interest is growing in developing conservation strategies to restore and maintain coral reef ecosystems in the face of mounting anthropogenic stressors, particularly climate warming and associated mass bleaching events. One such approach is to propagate coral colonies ex situ and transplant them to degraded reef areas to augment habitat for reef-dependent fauna, prevent colonization from spatial competitors, and enhance coral reproductive output. In addition to such "demographic restoration" efforts, manipulating the thermal tolerance of outplanted colonies through assisted relocation, selective breeding, or genetic engineering is being considered for enhancing rates of evolutionary adaptation to warming. Although research into such "assisted evolution" strategies has been growing, their expected performance remains unclear. We evaluated the potential outcomes of demographic restoration and assisted evolution in climate change scenarios using an eco-evolutionary simulation model. We found that supplementing reefs with pre-existing genotypes (demographic restoration) offers little climate resilience benefits unless input levels are large and maintained for centuries. Supplementation with thermally resistant colonies was successful at improving coral cover at lower input levels, but only if maintained for at least a century. Overall, we found that, although demographic restoration and assisted evolution have the potential to improve long-term coral cover, both approaches had a limited impact in preventing severe declines under climate change scenarios. Conversely, with sufficient natural genetic variance and time, corals could readily adapt to warming temperatures, suggesting that restoration approaches focused on building genetic variance may outperform those based solely on introducing heat-tolerant genotypes.


Assuntos
Antozoários , Recifes de Corais , Animais , Mudança Climática , Demografia , Ecossistema
2.
BMC Genomics ; 15: 71, 2014 Jan 28.
Artigo em Inglês | MEDLINE | ID: mdl-24467778

RESUMO

BACKGROUND: The lined sea anemone Edwardsiella lineata is an informative model system for evolutionary-developmental studies of parasitism. In this species, it is possible to compare alternate developmental pathways leading from a larva to either a free-living polyp or a vermiform parasite that inhabits the mesoglea of a ctenophore host. Additionally, E. lineata is confamilial with the model cnidarian Nematostella vectensis, providing an opportunity for comparative genomic, molecular and organismal studies. DESCRIPTION: We generated a reference transcriptome for E. lineata via high-throughput sequencing of RNA isolated from five developmental stages (parasite; parasite-to-larva transition; larva; larva-to-adult transition; adult). The transcriptome comprises 90,440 contigs assembled from >15 billion nucleotides of DNA sequence. Using a molecular clock approach, we estimated the divergence between E. lineata and N. vectensis at 215-364 million years ago. Based on gene ontology and metabolic pathway analyses and gene family surveys (bHLH-PAS, deiodinases, Fox genes, LIM homeodomains, minicollagens, nuclear receptors, Sox genes, and Wnts), the transcriptome of E. lineata is comparable in depth and completeness to N. vectensis. Analyses of protein motifs and revealed extensive conservation between the proteins of these two edwardsiid anemones, although we show the NF-κB protein of E. lineata reflects the ancestral structure, while the NF-κB protein of N. vectensis has undergone a split that separates the DNA-binding domain from the inhibitory domain. All contigs have been deposited in a public database (EdwardsiellaBase), where they may be searched according to contig ID, gene ontology, protein family motif (Pfam), enzyme commission number, and BLAST. The alignment of the raw reads to the contigs can also be visualized via JBrowse. CONCLUSIONS: The transcriptomic data and database described here provide a platform for studying the evolutionary developmental genomics of a derived parasitic life cycle. In addition, these data from E. lineata will aid in the interpretation of evolutionary novelties in gene sequence or structure that have been reported for the model cnidarian N. vectensis (e.g., the split NF-κB locus). Finally, we include custom computational tools to facilitate the annotation of a transcriptome based on high-throughput sequencing data obtained from a "non-model system."


Assuntos
Bases de Dados Genéticas , Genoma , Anêmonas-do-Mar/genética , Transcriptoma , Animais , Cnidários/genética , Genômica , Sequenciamento de Nucleotídeos em Larga Escala , Estágios do Ciclo de Vida/genética , Redes e Vias Metabólicas/genética , NF-kappa B/genética , Filogenia , RNA Ribossômico 18S/classificação , RNA Ribossômico 18S/genética , Anêmonas-do-Mar/classificação , Anêmonas-do-Mar/crescimento & desenvolvimento , Proteínas Wnt/química , Proteínas Wnt/classificação , Proteínas Wnt/genética
3.
Evol Appl ; 12(2): 214-229, 2019 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-30697335

RESUMO

Males of many fish species exhibit alternative reproductive tactics, which can influence the maturation schedules, fishery productivity, and resilience to harvest of exploited populations. While alternative mating phenotypes can persist in stable equilibria through frequency-dependent selection, shifts in tactic frequencies have been observed and can have substantial consequences for fisheries. Here, we examine the dynamics of precocious sneaker males called "jacks" in a population of sockeye salmon (Oncorhynchus nerka) from Frazer Lake, Alaska. Jacks, which are of little commercial value due to their small body sizes, have recently been observed at unusually high levels in this stock, degrading the value of regional fisheries. To inform future strategies for managing the prevalence of jacks, we used long-term monitoring data to identify what regulates the frequencies of alternative male phenotypes in the population over time. Expression of the jack life history could not be explained by environmental factors expected to influence juvenile body condition and maturation probability. Instead, we found a strong positive association between the proportion of individuals maturing as jacks within a cohort and the prevalence of jacks among the males that sired that cohort. Moreover, due to differences in age-at-maturity between male phenotypes, and large interannual variability in recruitment strength, jacks from strong year-classes often spawn among older males from the weaker recruitments of earlier cohorts. Through such "cohort mismatches," which are amplified by size-selective harvest on older males, jacks frequently achieve substantial representation in the breeding population, and likely high total fertilizations. The repeated occurrence of these cohort mismatches appears to disrupt the stabilizing influence of frequency-dependent selection, allowing the prevalence of jacks to exceed what might be expected under equilibrium conditions. These results emphasize that the dynamics of alternative life histories can profoundly influence fishery performance and should be explicitly considered in the management of exploited populations.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA