RESUMO
BACKGROUND: The extended acquisition times required for MRI limit its availability in resource-constrained settings. Consequently, accelerating MRI by undersampling k-space data, which is necessary to reconstruct an image, has been a long-standing but important challenge. We aimed to develop a deep convolutional neural network (dCNN) optimisation method for MRI reconstruction and to reduce scan times and evaluate its effect on image quality and accuracy of oncological imaging biomarkers. METHODS: In this multicentre, retrospective, cohort study, MRI data from patients with glioblastoma treated at Heidelberg University Hospital (775 patients and 775 examinations) and from the phase 2 CORE trial (260 patients, 1083 examinations, and 58 institutions) and the phase 3 CENTRIC trial (505 patients, 3147 examinations, and 139 institutions) were used to develop, train, and test dCNN for reconstructing MRI from highly undersampled single-coil k-space data with various acceleration rates (R=2, 4, 6, 8, 10, and 15). Independent testing was performed with MRIs from the phase 2/3 EORTC-26101 trial (528 patients with glioblastoma, 1974 examinations, and 32 institutions). The similarity between undersampled dCNN-reconstructed and original MRIs was quantified with various image quality metrics, including structural similarity index measure (SSIM) and the accuracy of undersampled dCNN-reconstructed MRI on downstream radiological assessment of imaging biomarkers in oncology (automated artificial intelligence-based quantification of tumour burden and treatment response) was performed in the EORTC-26101 test dataset. The public NYU Langone Health fastMRI brain test dataset (558 patients and 558 examinations) was used to validate the generalisability and robustness of the dCNN for reconstructing MRIs from available multi-coil (parallel imaging) k-space data. FINDINGS: In the EORTC-26101 test dataset, the median SSIM of undersampled dCNN-reconstructed MRI ranged from 0·88 to 0·99 across different acceleration rates, with 0·92 (95% CI 0·92-0·93) for 10-times acceleration (R=10). The 10-times undersampled dCNN-reconstructed MRI yielded excellent agreement with original MRI when assessing volumes of contrast-enhancing tumour (median DICE for spatial agreement of 0·89 [95% CI 0·88 to 0·89]; median volume difference of 0·01 cm3 [95% CI 0·00 to 0·03] equalling 0·21%; p=0·0036 for equivalence) or non-enhancing tumour or oedema (median DICE of 0·94 [95% CI 0·94 to 0·95]; median volume difference of -0·79 cm3 [95% CI -0·87 to -0·72] equalling -1·77%; p=0·023 for equivalence) in the EORTC-26101 test dataset. Automated volumetric tumour response assessment in the EORTC-26101 test dataset yielded an identical median time to progression of 4·27 months (95% CI 4·14 to 4·57) when using 10-times-undersampled dCNN-reconstructed or original MRI (log-rank p=0·80) and agreement in the time to progression in 374 (95·2%) of 393 patients with data. The dCNN generalised well to the fastMRI brain dataset, with significant improvements in the median SSIM when using multi-coil compared with single-coil k-space data (p<0·0001). INTERPRETATION: Deep-learning-based reconstruction of undersampled MRI allows for a substantial reduction of scan times, with a 10-times acceleration demonstrating excellent image quality while preserving the accuracy of derived imaging biomarkers for the assessment of oncological treatment response. Our developments are available as open source software and hold considerable promise for increasing the accessibility to MRI, pending further prospective validation. FUNDING: Deutsche Forschungsgemeinschaft (German Research Foundation) and an Else Kröner Clinician Scientist Endowed Professorship by the Else Kröner Fresenius Foundation.
Assuntos
Aprendizado Profundo , Glioblastoma , Humanos , Inteligência Artificial , Biomarcadores , Estudos de Coortes , Glioblastoma/diagnóstico por imagem , Imageamento por Ressonância Magnética , Estudos RetrospectivosRESUMO
Local recurrence after radiotherapy is common in locally advanced head and neck cancer (HNC) patients. Re-irradiation can improve local disease control, but disease progression remains frequent. Hence, predictive biomarkers are needed to adapt treatment intensity to the patient's individual risk. We quantified circulating tumor DNA (ctDNA) in sequential plasma samples and correlated ctDNA levels with disease outcome. Ninety four longitudinal plasma samples from 16 locally advanced HNC patients and 57 healthy donors were collected at re-radiotherapy baseline, after 5 and 10 radiation fractions, at irradiation end, and at routine follow-up visits. Plasma DNA was subjected to low coverage whole genome sequencing for copy number variation (CNV) profiling to quantify ctDNA burden. CNV-based ctDNA burden was detected in 8/16 patients and 25/94 plasma samples. Ten additional ctDNA-positive samples were identified by tracking patient-specific CNVs found in earlier sequential plasma samples. ctDNA-positivity after 5 and 10 radiation fractions (both: log-rank, p = .050) as well as at the end of irradiation correlated with short progression-free survival (log-rank, p = .006). Moreover, a pronounced decrease of ctDNA toward re-radiotherapy termination was associated with worse treatment outcome (log-rank, p = .005). Dynamic ctDNA tracking in serial plasma beyond re-radiotherapy reflected treatment response and imminent disease progression. In five patients, molecular progression was detected prior to tumor progression based on clinical imaging. Our findings emphasize that quantifying ctDNA during re-radiotherapy may contribute to disease monitoring and personalization of adjuvant treatment, follow-up intervals, and dose prescription.
RESUMO
BACKGROUND: While surgical resection remains the primary treatment approach for symptomatic or growing meningiomas, radiotherapy represents an auspicious alternative in patients with meningiomas not safely amenable to surgery. Biopsies are often omitted in light of potential postoperative neurological deficits, resulting in a lack of histological grading and (molecular) risk stratification. In this prospective explorative biomarker study, extracellular vesicles in the bloodstream will be investigated in patients with macroscopic meningiomas to identify a biomarker for molecular risk stratification and disease monitoring. METHODS: In total, 60 patients with meningiomas and an indication of radiotherapy (RT) and macroscopic tumor on the planning MRI will be enrolled. Blood samples will be obtained before the start, during, and after radiotherapy, as well as during clinical follow-up every 6 months. Extracellular vesicles will be isolated from the blood samples, quantified and correlated with the clinical treatment response or progression. Further, nanopore sequencing-based DNA methylation profiles of plasma EV-DNA will be generated for methylation-based meningioma classification. DISCUSSION: This study will explore the dynamic of plasma EVs in meningioma patients under/after radiotherapy, with the objective of identifying potential biomarkers of (early) tumor progression. DNA methylation profiling of plasma EVs in meningioma patients may enable molecular risk stratification, facilitating a molecularly-guided target volume delineation and adjusted dose prescription during RT treatment planning.
Assuntos
Vesículas Extracelulares , Neoplasias Meníngeas , Meningioma , Humanos , Meningioma/cirurgia , Neoplasias Meníngeas/cirurgia , Estudos Prospectivos , Biópsia Líquida , Biomarcadores , Vesículas Extracelulares/patologiaRESUMO
PURPOSE: Surgery for recurrent glioma provides cytoreduction and tissue for molecularly informed treatment. With mostly heavily pretreated patients involved, it is unclear whether the benefits of repeat surgery outweigh its potential risks. METHODS: Patients receiving surgery for recurrent glioma WHO grade 2-4 with the goal of tissue sampling for targeted therapies were analyzed retrospectively. Complication rates (surgical, neurological) were compared to our institutional glioma surgery cohort. Tissue molecular diagnostic yield, targeted therapies and post-surgical survival rates were analyzed. RESULTS: Between 2017 and 2022, tumor board recommendation for targeted therapy through molecular diagnostics was made for 180 patients. Of these, 70 patients (38%) underwent repeat surgery. IDH-wildtype glioblastoma was diagnosed in 48 patients (69%), followed by IDH-mutant astrocytoma (n = 13; 19%) and oligodendroglioma (n = 9; 13%). Gross total resection (GTR) was achieved in 50 patients (71%). Tissue was processed for next-generation sequencing in 64 cases (91%), and for DNA methylation analysis in 58 cases (83%), while immunohistochemistry for mTOR phosphorylation was performed in 24 cases (34%). Targeted therapy was recommended in 35 (50%) and commenced in 21 (30%) cases. Postoperatively, 7 patients (11%) required revision surgery, compared to 7% (p = 0.519) and 6% (p = 0.359) of our reference cohorts of patients undergoing first and second craniotomy, respectively. Non-resolving neurological deterioration was documented in 6 cases (10% vs. 8%, p = 0.612, after first and 4%, p = 0.519, after second craniotomy). Median survival after repeat surgery was 399 days in all patients and 348 days in GBM patients after repeat GTR. CONCLUSION: Surgery for recurrent glioma provides relevant molecular diagnostic information with a direct consequence for targeted therapy under a reasonable risk of postoperative complications. With satisfactory postoperative survival it can therefore complement a multi-modal glioma therapy approach.
Assuntos
Neoplasias Encefálicas , Glioma , Humanos , Reoperação , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/cirurgia , Neoplasias Encefálicas/patologia , Estudos Retrospectivos , Recidiva Local de Neoplasia/genética , Recidiva Local de Neoplasia/cirurgia , Medicina de Precisão , Glioma/genética , Glioma/cirurgia , Glioma/patologiaRESUMO
PROBASE is a population-based, randomized trial of 46 495 German men recruited at age 45 to compare effects of risk-adapted prostate cancer (PCa) screening starting either immediately at age 45, or at a deferred age of 50 years. Based on prostate-specific antigen (PSA) levels, men are classified into risk groups with different screening intervals: low-risk (<1.5 ng/ml, 5-yearly screening), intermediate-risk (1.5-2.99 ng/ml, 2 yearly), and high risk (>3 ng/ml, recommendation for immediate biopsy). Over the first 6 years of study participation, attendance rates to scheduled screening visits varied from 70.5% to 79.4%, depending on the study arm and risk group allocation, in addition 11.2% to 25.4% of men reported self-initiated PSA tests outside the PROBASE protocol. 38.5% of participants had a history of digital rectal examination or PSA testing prior to recruitment to PROBASE, frequently associated with family history of PCa. These men showed higher rates (33% to 57%, depending on subgroups) of self-initiated PSA testing in-between PROBASE screening rounds. In the high-risk groups (both arms), the biopsy acceptance rate was 64% overall, but was higher among men with screening PSA ≥4 ng/ml (>71%) and with PIRADS ≥3 findings upon multiparameter magnetic resonance imaging (mpMRI) (>72%), compared with men with PSA ≥3 to 4 ng/ml (57%) or PIRADS score ≤ 2 (59%). Overall, PROBASE shows good acceptance of a risk-adapted PCa screening strategy in Germany. Implementation of such a strategy should be accompanied by a well-structured communication, to explain not only the benefits but also the harms of PSA screening.
Assuntos
Antígeno Prostático Específico , Neoplasias da Próstata , Humanos , Masculino , Pessoa de Meia-Idade , Biópsia , Detecção Precoce de Câncer/métodos , Programas de Rastreamento/métodos , Neoplasias da Próstata/diagnóstico , Neoplasias da Próstata/patologia , Fatores de RiscoRESUMO
Precision oncology is a rapidly evolving interdisciplinary medical specialty. Comprehensive cancer panels are becoming increasingly available at pathology departments worldwide, creating the urgent need for scalable cancer variant annotation and molecularly informed treatment recommendations. A wealth of mainly academia-driven knowledge bases calls for software tools supporting the multi-step diagnostic process. We derive a comprehensive list of knowledge bases relevant for variant interpretation by a review of existing literature followed by a survey among medical experts from university hospitals in Germany. In addition, we review cancer variant interpretation tools, which integrate multiple knowledge bases. We categorize the knowledge bases along the diagnostic process in precision oncology and analyze programmatic access options as well as the integration of knowledge bases into software tools. The most commonly used knowledge bases provide good programmatic access options and have been integrated into a range of software tools. For the wider set of knowledge bases, access options vary across different parts of the diagnostic process. Programmatic access is limited for information regarding clinical classifications of variants and for therapy recommendations. The main issue for databases used for biological classification of pathogenic variants and pathway context information is the lack of standardized interfaces. There is no single cancer variant interpretation tool that integrates all identified knowledge bases. Specialized tools are available and need to be further developed for different steps in the diagnostic process.
Assuntos
Bases de Dados Genéticas , Bases de Conhecimento , Neoplasias , Medicina de Precisão , Software , Humanos , Neoplasias/genética , Neoplasias/metabolismoRESUMO
PURPOSE: The purpose of this study was to compare the potential of asymmetry-based (APTwasym ), Lorentzian-fit-based (PeakAreaAPT and MTconst ), and relaxation-compensated (MTRRex APT and MTRRex MT) CEST contrasts of the amide proton transfer (APT) and semi-solid magnetization transfer (ssMT) for early response assessment and prediction of progression-free survival (PFS) in patients with glioma. METHODS: Seventy-two study participants underwent CEST-MRI at 3T from July 2018 to December 2021 in a prospective clinical trial four to 6 wk after the completion of radiotherapy for diffuse glioma. Tumor segmentations were performed on T2w -FLAIR and contrast-enhanced T1w images. Therapy response assessment and determination of PFS were performed according to response assessment in neuro oncology (RANO) criteria using clinical follow-up data with a median observation time of 9.2 mo (range, 1.6-40.8) and compared to CEST MRI metrics. Statistical testing included receiver operating characteristic analyses, Mann-Whitney-U-test, Kaplan-Meier analyses, and logrank-test. RESULTS: MTconst (AUC = 0.79, p < 0.01) showed a stronger association with RANO response assessment compared to PeakAreaAPT (AUC = 0.71, p = 0.02) and MTRRex MT (AUC = 0.71, p = 0.02), and enabled differentiation of participants with pseudoprogression (n = 8) from those with true progression (AUC = 0.79, p = 0.02). Furthermore, MTconst (HR = 3.04, p = 0.01), PeakAreaAPT (HR = 0.39, p = 0.03), and APTwasym (HR = 2.63, p = 0.02) were associated with PFS. MTRRex APT was not associated with any outcome. CONCLUSION: MTconst , PeakAreaAPT, and APTwasym imaging predict clinical outcome by means of progression-free survival. Furthermore, MTconst enables differentiation of radiation-induced pseudoprogression from disease progression. Therefore, the assessed metrics may have synergistic potential for supporting clinical decision making during follow-up of patients with glioma.
Assuntos
Neoplasias Encefálicas , Glioma , Humanos , Amidas , Neoplasias Encefálicas/diagnóstico por imagem , Neoplasias Encefálicas/radioterapia , Neoplasias Encefálicas/patologia , Glioma/diagnóstico por imagem , Glioma/radioterapia , Glioma/patologia , Imageamento por Ressonância Magnética/métodos , Estudos Prospectivos , Prótons , Curva ROCRESUMO
BACKGROUND: Mobile health (mhealth) is gaining interest, with mobile devices and apps being ever more available among medical facilities and patients. However, in the field of radiation oncology, the medical benefits of mhealth apps are still underexplored. As an additional approach to patient care during radiotherapy, we designed a mobile treatment surveillance app based on patient-reported outcomes. OBJECTIVE: We aimed to examine the feasibility of app-based treatment surveillance in patients undergoing radiotherapy (RT). Alongside technical practicability and acceptance, we assessed patient satisfaction and quality of life during treatment. METHODS: This prospective single-center study was performed at Heidelberg University Hospital between August 2018 and January 2020. During RT we measured patients' quality of life, symptoms, and treatment satisfaction. Respective questionnaires (EORTC QLQ-C30 with diagnosis-specific modules, RAND PSQ-18) were presented to patients via a mobile app running on a designated tablet device. The primary endpoint was determined by the fraction of patients who completed at least 80% of the items. Secondary endpoints were disease-related quality of life and patient satisfaction. RESULTS: A total of 49 cancer patients (14 breast, 13 pelvic, 12 lung, 10 prostate) were eligible for analysis. 79.6% (95% confidence interval: 66.4-88.5%; nâ¯= 39) of all patients completed at least 80% of the items received by the mobile app. A mean of 227.5⯱ 48.25 questions were answered per patient. Breast cancer patients showed the highest rate of answered questions, with 92.9% (nâ¯= 13) completing at least 80% of the items. CONCLUSION: Patients showed high acceptance, with 79.6% (nâ¯= 39) completing at least 80% of the given items. The use of a mobile app for reporting symptoms and quality of life during RT is feasible and well accepted by patients. It may allow for resource-efficient, detailed feedback to the medical staff and assist in the assessment of side effects over time.
RESUMO
BACKGROUND: This study aimed to compare the results of irradiation with protons versus irradiation with carbon ions in a raster scan technique in patients with skull base chordomas and to identify risk factors that may compromise treatment results. METHODS: A total of 147 patients (85 men, 62 women) were irradiated with carbon ions (111 patients) or protons (36 patients) with a median dose of 66â¯Gy (RBE (Relative biological effectiveness); carbon ions) in 4 weeks or 74â¯Gy (RBE; protons) in 7 weeks at the Heidelberg Ion Beam Therapy Center (HIT) in Heidelberg, Germany. The median follow-up time was 49.3 months. All patients had gross residual disease at the beginning of RT. Compression of the brainstem was present in 38%, contact without compression in 18%, and no contact but less than 3â¯mm distance in 16%. Local control and overall survival were evaluated using the Kaplan-Meier Method based on scheduled treatment (protons vs. carbon ions) and compared via the log rank test. Subgroup analyses were performed to identify possible prognostic factors. RESULTS: During the follow-up, 41 patients (27.9%) developed a local recurrence. The median follow-up time was 49.3 months (95% CI: 40.8-53.8; reverse Kaplan-Meier median follow-up time 56.3 months, 95% CI: 51.9-60.7). No significant differences between protons and carbon ions were observed regarding LC, OS, or overall toxicity. The 1year, 3year, and 5year LC rates were 97%, 80%, and 61% (protons) and 96%, 80%, and 65% (carbon ions), respectively. The corresponding OS rates were 100%, 92%, and 92% (protons) and 99%, 91%, and 83% (carbon ions). No significant prognostic factors for LC or OS could be determined regarding the whole cohort; however, a significantly improved LC could be observed if the tumor was >â¯3â¯mm distant from the brainstem in patients presenting in a primary situation. CONCLUSION: Outcomes of proton and carbon ion treatment of skull base chordomas seem similar regarding tumor control, survival, and toxicity. Close proximity to the brainstem might be a negative prognostic factor, at least in patients presenting in a primary situation.
Assuntos
Condrossarcoma , Cordoma , Neoplasias de Cabeça e Pescoço , Radioterapia com Íons Pesados , Terapia com Prótons , Neoplasias da Base do Crânio , Masculino , Humanos , Feminino , Prótons , Cordoma/diagnóstico por imagem , Cordoma/radioterapia , Cordoma/tratamento farmacológico , Condrossarcoma/tratamento farmacológico , Condrossarcoma/etiologia , Íons , Carbono/uso terapêutico , Neoplasias da Base do Crânio/diagnóstico por imagem , Neoplasias da Base do Crânio/radioterapia , Neoplasias da Base do Crânio/tratamento farmacológico , Base do Crânio/patologia , Radioterapia com Íons Pesados/efeitos adversos , Radioterapia com Íons Pesados/métodosRESUMO
PURPOSE: Proton beam radiotherapy (PRT) has been demonstrated to improve neurocognitive sequelae particularly. Nevertheless, following PRT, increased rates of radiation-induced contrast enhancements (RICE) are feared. How safe and effective is PRT for IDH-mutated glioma WHO grade 2 and 3? METHODS: We analyzed 194 patients diagnosed with IDH-mutated WHO grade 2 (n = 128) and WHO grade 3 (n = 66) glioma who were treated with PRT from 2010 to 2020. Serial clinical and imaging follow-up was performed for a median of 5.1 years. RESULTS: For WHO grade 2, 61% were astrocytoma and 39% oligodendroglioma while for WHO grade 3, 55% were astrocytoma and 45% oligodendroglioma. Median dose for IDH-mutated glioma was 54 Gy(RBE) [range 50.4-60 Gy(RBE)] for WHO grade 2 and 60 Gy(RBE) [range 54-60 Gy(RBE)] for WHO grade 3. Five year overall survival was 85% in patients with WHO grade 2 and 67% in patients with WHO grade 3 tumors. Overall RICE risk was 25%, being higher in patients with WHO grade 2 (29%) versus in patients with WHO grade 3 (17%, p = 0.13). RICE risk increased independent of tumor characteristics with older age (p = 0.017). Overall RICE was symptomatic in 31% of patients with corresponding CTCAE grades as follows: 80% grade 1, 7% grade 2, 13% grade 3, and 0% grade 3 + . Overall need for RICE-directed therapy was 35%. CONCLUSION: These data demonstrate the effectiveness of PRT for IDH-mutated glioma WHO grade 2 and 3. The RICE risk differs with WHO grading and is higher in older patients with IDH-mutated Glioma WHO grade 2 and 3.
Assuntos
Astrocitoma , Neoplasias Encefálicas , Glioma , Oligodendroglioma , Humanos , Idoso , Oligodendroglioma/patologia , Prótons , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/radioterapia , Neoplasias Encefálicas/patologia , Glioma/genética , Glioma/radioterapia , Astrocitoma/patologia , Organização Mundial da Saúde , Isocitrato Desidrogenase/genética , MutaçãoRESUMO
Radiotherapy with protons or light ions can offer accurate and precise treatment delivery. Accurate knowledge of the stopping power ratio (SPR) distribution of the tissues in the patient is crucial for improving dose prediction in patients during planning. However, materials of uncertain stoichiometric composition such as dental implant and restoration materials can substantially impair particle therapy treatment planning due to related SPR prediction uncertainties. This study investigated the impact of using dual-energy computed tomography (DECT) imaging for characterizing and compensating for commonly used dental implant and restoration materials during particle therapy treatment planning. Radiological material parameters of ten common dental materials were determined using two different DECT techniques: sequential acquisition CT (SACT) and dual-layer spectral CT (DLCT). DECT-based direct SPR predictions of dental materials via spectral image data were compared to conventional single-energy CT (SECT)-based SPR predictions obtained via indirect CT-number-to-SPR conversion. DECT techniques were found overall to reduce uncertainty in SPR predictions in dental implant and restoration materials compared to SECT, although DECT methods showed limitations for materials containing elements of a high atomic number. To assess the influence on treatment planning, an anthropomorphic head phantom with a removable tooth containing lithium disilicate as a dental material was used. The results indicated that both DECT techniques predicted similar ranges for beams unobstructed by dental material in the head phantom. When ion beams passed through the lithium disilicate restoration, DLCT-based SPR predictions using a projection-based method showed better agreement with measured reference SPR values (range deviation: 0.2 mm) compared to SECT-based predictions. DECT-based SPR prediction may improve the management of certain non-tissue dental implant and restoration materials and subsequently increase dose prediction accuracy.
Assuntos
Implantes Dentários , Terapia com Prótons , Humanos , Tomografia Computadorizada por Raios X/métodos , Prótons , Imagens de FantasmasRESUMO
Reports of concurrent sparing of normal tissue and iso-effective treatment of tumors at ultra-high dose-rates (uHDR) have fueled the growing field of FLASH radiotherapy. However, iso-effectiveness in tumors is often deduced from the absence of a significant difference in their growth kinetics. In a model-based analysis, we investigate the meaningfulness of these indications for the clinical treatment outcome. The predictions of a previously benchmarked model of uHDR sparing in the "UNIfied and VERSatile bio response Engine" (UNIVERSE) are combined with existing models of tumor volume kinetics as well as tumor control probability (TCP) and compared to experimental data. The potential TCP of FLASH radiotherapy is investigated by varying the assumed dose-rate, fractionation schemes and oxygen concentration in the target. The developed framework describes the reported tumor growth kinetics appropriately, indicating that sparing effects could be present in the tumor but might be too small to be detected with the number of animals used. The TCP predictions show the possibility of substantial loss of treatment efficacy for FLASH radiotherapy depending on several variables, including the fractionation scheme, oxygen level, and DNA repair kinetics. The possible loss of TCP should be seriously considered when assessing the clinical viability of FLASH treatments.
Assuntos
Neoplasias , Humanos , Dosagem Radioterapêutica , Neoplasias/radioterapia , Probabilidade , Fracionamento da Dose de Radiação , Planejamento da Radioterapia Assistida por ComputadorRESUMO
Due to their rarity, histologic heterogeneity, and localization, treatment of malignant salivary gland tumors requires an interdisciplinary approach. First-line treatment includes complete tumor resection. Postoperative radiation therapy is advised in patients with risk factors, i.e., incomplete tumor resection, high-grade tumors, or perineural invasion. Definitive radiation therapy is only advised for inoperable tumors because of significantly lower local control and survival rates when compared to combined surgery and radiation therapy. In radiation oncology, modern techniques such as intensity-modulated radiation therapy (IMRT) or particle therapy with heavy ions (i.e., C12) have led to improved outcomes in the treatment of head and neck tumors, especially of adenoid cystic carcinomas. Given the biological and physical benefits of particles, particle therapy, particularly carbon ion radiation, is a promising therapeutic approach for salivary gland tumors that will be further investigated in prospective clinical studies.
Assuntos
Carcinoma Adenoide Cístico , Neoplasias de Cabeça e Pescoço , Radioterapia de Intensidade Modulada , Neoplasias das Glândulas Salivares , Humanos , Estudos Prospectivos , Neoplasias das Glândulas Salivares/radioterapia , Neoplasias das Glândulas Salivares/cirurgia , Radioterapia de Intensidade Modulada/métodos , Carcinoma Adenoide Cístico/radioterapia , Carcinoma Adenoide Cístico/cirurgiaRESUMO
Background: Chordomas have a high risk of recurrence. Radiotherapy (RT) is required as adjuvant therapy after resection. Sufficient radiation doses for local control (LC) can be achieved using either particle therapy, if this technology is available and feasible, or intensity-modulated radiotherapy. Materials and methods: 57 patients (age, 11.8-81.6 years) with chordomas of the skull base, spine and pelvis who received photon radiotherapy between 1995 and 2017 were enrolled in the study. Patients were treated at the time of initial diagnosis (68.4%) or during recurrence (31.6%). 44 patients received adjuvant radiotherapy and 13 received definitive radiotherapy. The median total dose to the physical target volume was 70 Gy equivalent dose in 2 Gy fractions (EQD2) (range: 54.7-82.5) in 22-36 fractions. Results: LC was 76.4%, 58.4%, 46.7% and 39.9% and overall survival (OS) was 98.3%, 89%, 76.9% and 47.9% after 1, 3, 5 and 10 years, respectively, with a median follow-up period of 6.5 years (range, 0.5-24.3 years). Age, dose and treatment concept (post-operative or definitive) were significant prognostic factors for OS. Primary treatment, macroscopic tumour at RT and size of the irradiated volume were statistically significant prognostic factors for LC. Conclusion: Photon treatment is a safe and effective treatment for chordomas if no particle therapy is available. The best results can be achieved against primary tumours if the application of curative doses is possible due to organs at risk in direct proximity. We recommend high-dose radiotherapy, regardless of the resection status, as part of the initial treatment of chordoma, using the high conformal radiation technique if particle therapy is not feasible.
RESUMO
It is elusive whether clonal selection of tumor cells in response to ionizing radiation (IR) is a deterministic or stochastic process. With high resolution clonal barcoding and tracking of over 400 000 HNSCC patient-derived tumor cells the clonal dynamics of tumor cells in response to IR was analyzed. Fractionated IR induced a strong selective pressure for clonal reduction which significantly exceeded uniform clonal survival probabilities indicative for a strong clone-to-clone difference within tumor cell lines. IR induced clonal reduction affected the majority of tumor cells ranging between 96% and 75% and correlated to the degree of radiation sensitivity. Survival to IR is driven by a deterministic clonal selection of a smaller population which commonly survives radiation, while increased clonogenic capacity is a result of clonal competition of cells which have been selected stochastically. A 2-fold increase in radiation resistance results in a 4-fold (P < .05) higher deterministic clonal selection showing that the ratio of these parameters is amenable to radiation sensitivity which correlates to prognostic biomarkers of HNSCC. Evidence for the existence of a rare subpopulation with an intrinsically radiation resistant phenotype commonly surviving IR was found at a frequency of 0.6% to 3.3% (P < .001, FDR 3%). With cellular barcoding we introduce a novel functional heterogeneity associated qualitative readout for tracking dynamics of clonogenic survival in response to radiation. This enables the quantification of intrinsically radiation resistant tumor cells from patient samples and reveals the contribution of stochastic and deterministic clonal selection processes in response to IR.
Assuntos
Neoplasias de Cabeça e Pescoço/radioterapia , Tolerância a Radiação , Carcinoma de Células Escamosas de Cabeça e Pescoço/radioterapia , Biomarcadores Tumorais , Linhagem Celular Tumoral , Seleção Clonal Mediada por Antígeno , Neoplasias de Cabeça e Pescoço/patologia , Humanos , Carcinoma de Células Escamosas de Cabeça e Pescoço/patologia , Processos EstocásticosRESUMO
Biomarkers with relevance for loco-regional therapy are needed in human papillomavirus negative aka HPV(-) head and neck squamous cell carcinoma (HNSCC). Based on the premise that DNA methylation pattern is highly conserved, we sought to develop a reliable and robust methylome-based classifier identifying HPV(-) HNSCC patients at risk for loco-regional recurrence (LR) and all-event progression after postoperative radiochemotherapy (PORT-C). The training cohort consisted of HPV-DNA negative HNSCC patients (n = 128) homogeneously treated with PORT-C in frame of the German Cancer Consortium-Radiation Oncology Group (DKTK-ROG) multicenter biomarker trial. DNA Methylation analysis was performed using Illumina 450 K and 850 K-EPIC microarray technology. The performance of the classifier was integrated with a series of biomarkers studied in the training set namely hypoxia-, 5-microRNA (5-miR), stem-cell gene-expression signatures and immunohistochemistry (IHC)-based immunological characterization of tumors (CD3/CD8/PD-L1/PD1). Validation occurred in an independent cohort of HPV(-) HNSCC patients, pooled from two German centers (n = 125). We identified a 38-methylation probe-based HPV(-) Independent Classifier of disease Recurrence (HICR) with high prognostic value for LR, distant metastasis and overall survival (P < 10-9 ). HICR remained significant after multivariate analysis adjusting for anatomical site, lymph node extracapsular extension (ECE) and size (T-stage). HICR high-risk tumors were enriched for younger patients with hypoxic tumors (15-gene signature) and elevated 5-miR score. After adjustment for hypoxia and 5-miR covariates, HICR maintained predicting all endpoints. HICR provides a novel mean for assessing the risk of LR in HPV(-) HNSCC patients treated with PORT-C and opens a new opportunity for biomarker-assisted stratification and therapy adaptation in these patients.
Assuntos
Quimiorradioterapia , Metilação de DNA , DNA de Neoplasias/metabolismo , Neoplasias de Cabeça e Pescoço/genética , Recidiva Local de Neoplasia/etiologia , Carcinoma de Células Escamosas de Cabeça e Pescoço/genética , Terapia Combinada , Feminino , Neoplasias de Cabeça e Pescoço/imunologia , Neoplasias de Cabeça e Pescoço/terapia , Neoplasias de Cabeça e Pescoço/virologia , Humanos , Masculino , MicroRNAs/análise , Pessoa de Meia-Idade , Papillomaviridae/isolamento & purificação , Carcinoma de Células Escamosas de Cabeça e Pescoço/imunologia , Carcinoma de Células Escamosas de Cabeça e Pescoço/terapia , Carcinoma de Células Escamosas de Cabeça e Pescoço/virologiaRESUMO
PURPOSE: For planning CyberKnife stereotactic radiosurgery (CK SRS) of brain metastases (BM), it is essential to precisely determine the exact number and location of BM in MRI. Recent MR studies suggest the superiority of contrast-enhanced 3D fast spin echo SPACE (sampling perfection with application-optimized contrast by using different flip angle evolutions) images over 3D gradient echo (GE) T1-weighted MPRAGE (magnetization-prepared rapid gradient echo) images for detecting small BM. The aim of this study is to test the usability of the SPACE sequence for MRI-based radiation treatment planning and its impact on changing treatment. METHODS: For MRI-based radiation treatment planning using 3T MRI in 199 patients with cerebral oligometastases, we compared the detectability of BM in post-gadolinium SPACE images, post-gadolinium MPRAGE images, and post-gadolinium late-phase MPRAGE images. RESULTS: When SPACE images were used for MRI-based radiation treatment planning, 29.8% and 16.9% more BM, respectively, were detected and included in treatment planning than in the post-gadolinium MPRAGE images and the post-gadolinium late-phase MPRAGE images (post-gadolinium MPRAGE imaging: ntotalâ¯= 681, mean⯱ SD 3.4⯱ 4.2; post-gadolinium SPACE imaging: ntotalâ¯= 884, mean⯱ SD 4.4⯱ 6.0; post-gadolinium late-phase MPRAGE imaging: ntotalâ¯= 796, mean⯱ SD 4.0⯱ 5.3; Ppost-gadolinium SPACE imaging versus post-gadolinium MPRAGE imagingâ¯< 0.0001, Ppost-gadolinium SPACE imaging versus post-gadolinium late-phase MPRAGE imaging< 0.0001). CONCLUSION: For 3T MRI-based treatment planning of stereotactic radiosurgery of BM, we recommend the use of post-gadolinium SPACE imaging rather than post-gadolinium MPRAGE imaging.
Assuntos
Neoplasias Encefálicas , Radiocirurgia , Encéfalo/patologia , Neoplasias Encefálicas/diagnóstico por imagem , Neoplasias Encefálicas/radioterapia , Meios de Contraste , Gadolínio , Humanos , Imageamento Tridimensional/métodos , Imageamento por Ressonância Magnética/métodos , Radiocirurgia/métodosRESUMO
OBJECTIVE: Stereotactic body radiotherapy (SBRT) is a noninvasive treatment option for lymph node metastases (LNM). Magnetic resonance (MR)-guidance offers superior tissue contrast and enables treatment of targets in close vicinity to radiosensitive organs at risk (OAR). However, literature on MR-guided SBRT of LNM is scarce with no report on outcome parameters. MATERIALS AND METHODS: We report a subgroup analysis of a prospective observational study comprising patients with LNM. Patients received MR-guided SBRT at our MRIdian Linac (ViewRay Inc., Mountain View, CA, USA) between January 2019 and February 2020. Local control (LC), progression-free survival (PFS) and overall survival (OS) analysis were performed using the Kaplan-Meier method with log rank test to test for significance (pâ¯< 0.05). Our patient-reported outcome questionnaire was utilized to evaluate patients' perspective. The CTCAE (Common Terminology Criteria for Adverse Events) v. 5.0 was used to describe toxicity. RESULTS: Twenty-nine patients (72.4% with prostate cancer; 51.7% with no distant metastases) received MR-guided SBRT for in total 39 LNM. Median dose was 27â¯Gy in three fractions, prescribed to the 80% isodose. At 1year, estimated LC, PFS and OS were 92.6, 67.4 and 100.0%. Compared to baseline, six patients (20.7%) developed new grade I toxicities (mainly fatigue). One grade II toxicity occurred (fatigue), with no adverse event grade ≥III. Overall treatment experience was rated particularly positive, while the technically required low room temperature still represents the greatest obstacle in the pursuit of the ideal patient acceptance. CONCLUSION: MR-guided SBRT of LNM was demonstrated to be a well-accepted treatment modality with excellent preliminary results. Future studies should evaluate the clinical superiority to conventional SBRT.
Assuntos
Radiocirurgia , Radioterapia Guiada por Imagem , Humanos , Metástase Linfática/radioterapia , Espectroscopia de Ressonância Magnética , Masculino , Medidas de Resultados Relatados pelo Paciente , Radiocirurgia/métodos , Radioterapia Guiada por Imagem/métodosRESUMO
PURPOSE: The Working Group for Neurooncology of the German Society for Radiation Oncology (DEGRO; AG NRO) in cooperation with members of the Neurooncological Working Group of the German Cancer Society (DKG-NOA) aimed to define a practical guideline for the diagnosis and treatment of radiation-induced necrosis (RN) of the central nervous system (CNS). METHODS: Panel members of the DEGRO working group invited experts, participated in a series of conferences, supplemented their clinical experience, performed a literature review, and formulated recommendations for medical treatment of RN, including bevacizumab, in clinical routine. CONCLUSION: Diagnosis and treatment of RN requires multidisciplinary structures of care and defined processes. Diagnosis has to be made on an interdisciplinary level with the joint knowledge of a neuroradiologist, radiation oncologist, neurosurgeon, neuropathologist, and neurooncologist. If the diagnosis of blood-brain barrier disruptions (BBD) or RN is likely, treatment should be initiated depending on the symptoms, location, and dynamic of the lesion. Multiple treatment options are available (such as observation, surgery, steroids, and bevacizumab) and the optimal approach should be discussed in an interdisciplinary setting. In this practice guideline, we offer detailed treatment strategies for various scenarios.
Assuntos
Lesões por Radiação , Radiocirurgia , Humanos , Bevacizumab/uso terapêutico , Lesões por Radiação/etiologia , Lesões por Radiação/terapia , Lesões por Radiação/diagnóstico , Sistema Nervoso Central , NecroseRESUMO
PURPOSE: The Working Group for Neuro-Oncology of the German Society for Radiation Oncology in cooperation with members of the Neuro-Oncology Working Group of the German Cancer Society aimed to define a practical guideline for the diagnosis and treatment of radiation-induced necrosis (RN) of the central nervous system (CNS). METHODS: Panel members of the DEGRO working group invited experts, participated in a series of conferences, supplemented their clinical experience, performed a literature review, and formulated recommendations for medical treatment of RN including bevacizumab in clinical routine. CONCLUSION: Diagnosis and treatment of RN requires multidisciplinary structures of care and defined processes. Diagnosis has to be made on an interdisciplinary level with the joint knowledge of a neuroradiologist, radiation oncologist, neurosurgeon, neuropathologist, and neuro-oncologist. A multistep approach as an opportunity to review as many characteristics as possible to improve diagnostic confidence is recommended. Additional information about radiotherapy (RT) techniques is crucial for the diagnosis of RN. Misdiagnosis of untreated and progressive RN can lead to severe neurological deficits. In this practice guideline, we propose a detailed nomenclature of treatment-related changes and a multistep approach for their diagnosis.