Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Leuk Lymphoma ; : 1-11, 2024 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-38838026

RESUMO

The phase 3b FREEDOM trial (ClinicalTrials.gov: NCT03755518) evaluates efficacy/safety of fedratinib in intermediate- or high-risk myelofibrosis patients with platelet count ≥50 × 109/L, previously treated with ruxolitinib. The trial design included protocol specified strategies to mitigate the risk for gastrointestinal (GI) adverse events (AEs), thiamine supplementation, and encephalopathy surveillance. Due to COVID-19, accrual was cut short with 38 patients enrolled. In the efficacy evaluable population (n = 35), nine (25.7%; 95% confidence interval 12.5-43.3) patients achieved primary endpoint of ≥35% spleen volume reduction (SVR) at end of cycle (EOC) 6; and 22 (62.9%) patients showed best overall response of ≥35% SVR up to end of treatment. Sixteen (44.4%) patients showed ≥50% reduction in total symptom score at EOC6 (n = 36). Compared to previously reported JAKARTA-2 trial, rates of GI AEs were lower, and no patient developed encephalopathy. Overall, FREEDOM study showed clinically relevant spleen and symptom responses with fedratinib, and effective mitigation of GI AEs.

2.
J Immunother Cancer ; 11(12)2023 12 12.
Artigo em Inglês | MEDLINE | ID: mdl-38164756

RESUMO

BACKGROUND: Myelodysplastic syndromes (MDS) arise from somatic mutations acquired in hematopoietic stem and progenitor cells, causing cytopenias and predisposing to transformation into secondary acute myeloid leukemia (sAML). Recurrent mutations in spliceosome genes, including U2AF1, are attractive therapeutic targets as they are prevalent in MDS and sAML, arise early in neoplastic cells, and are generally absent from normal cells, including normal hematopoietic cells. MDS and sAML are susceptible to T cell-mediated killing, and thus engineered T-cell immunotherapies hold promise for their treatment. We hypothesized that targeting spliceosome mutation-derived neoantigens with transgenic T-cell receptor (TCR) T cells would selectively eradicate malignant cells in MDS and sAML. METHODS: We identified candidate neoantigen epitopes from recurrent protein-coding mutations in the spliceosome genes SRSF2 and U2AF1 using a multistep in silico process. Candidate epitopes predicted to bind human leukocyte antigen (HLA) class I, be processed and presented from the parent protein, and not to be subject to tolerance then underwent in vitro immunogenicity screening. CD8+ T cells recognizing immunogenic neoantigen epitopes were evaluated in in vitro assays to assess functional avidity, confirm the predicted HLA restriction, the potential for recognition of similar peptides, and the ability to kill neoplastic cells in an antigen-specific manner. Neoantigen-specific TCR were sequenced, cloned into lentiviral vectors, and transduced into third-party T cells after knock-out of endogenous TCR, then tested in vitro for specificity and ability to kill neoplastic myeloid cells presenting the neoantigen. The efficacy of neoantigen-specific T cells was evaluated in vivo in a murine cell line-derived xenograft model. RESULTS: We identified two neoantigens created from a recurrent mutation in U2AF1, isolated CD8+ T cells specific for the neoantigens, and demonstrated that transferring their TCR to third-party CD8+ T cells is feasible and confers specificity for the U2AF1 neoantigens. Finally, we showed that these neoantigen-specific TCR-T cells do not recognize normal hematopoietic cells but efficiently kill malignant myeloid cells bearing the specific U2AF1 mutation, including primary cells, in vitro and in vivo. CONCLUSIONS: These data serve as proof-of-concept for developing precision medicine approaches that use neoantigen-directed T-cell receptor-transduced T cells to treat MDS and sAML.


Assuntos
Leucemia Mieloide Aguda , Síndromes Mielodisplásicas , Humanos , Camundongos , Animais , Linfócitos T CD8-Positivos , Fator de Processamento U2AF/genética , Fator de Processamento U2AF/metabolismo , Antígenos de Neoplasias , Receptores de Antígenos de Linfócitos T/genética , Receptores de Antígenos de Linfócitos T/metabolismo , Síndromes Mielodisplásicas/genética , Síndromes Mielodisplásicas/terapia , Leucemia Mieloide Aguda/genética , Leucemia Mieloide Aguda/terapia , Leucemia Mieloide Aguda/metabolismo , Epitopos/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA