Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 636
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Nat Immunol ; 25(3): 462-470, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38278966

RESUMO

The persistence of CD4+ T cells carrying latent human immunodeficiency virus-1 (HIV-1) proviruses is the main barrier to a cure. New therapeutics to enhance HIV-1-specific immune responses and clear infected cells will probably be necessary to achieve reduction of the latent reservoir. In the present study, we report two single-chain diabodies (scDbs) that target the HIV-1 envelope protein (Env) and the human type III Fcγ receptor (CD16). We show that the scDbs promoted robust and HIV-1-specific natural killer (NK) cell activation and NK cell-mediated lysis of infected cells. Cocultures of CD4+ T cells from people with HIV-1 on antiretroviral therapy (ART) with autologous NK cells and the scDbs resulted in marked elimination of reservoir cells that was dependent on latency reversal. Treatment of human interleukin-15 transgenic NSG mice with one of the scDbs after ART initiation enhanced NK cell activity and reduced reservoir size. Thus, HIV-1-specific scDbs merit further evaluation as potential therapeutics for clearance of the latent reservoir.


Assuntos
Anticorpos Biespecíficos , HIV-1 , Animais , Camundongos , Humanos , Células Matadoras Naturais , Citotoxicidade Imunológica , Morte Celular , Camundongos Transgênicos
2.
Nat Immunol ; 25(2): 218-225, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38212464

RESUMO

Long COVID (LC) occurs after at least 10% of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infections, yet its etiology remains poorly understood. We used 'omic" assays and serology to deeply characterize the global and SARS-CoV-2-specific immunity in the blood of individuals with clear LC and non-LC clinical trajectories, 8 months postinfection. We found that LC individuals exhibited systemic inflammation and immune dysregulation. This was evidenced by global differences in T cell subset distribution implying ongoing immune responses, as well as by sex-specific perturbations in cytolytic subsets. LC individuals displayed increased frequencies of CD4+ T cells poised to migrate to inflamed tissues and exhausted SARS-CoV-2-specific CD8+ T cells, higher levels of SARS-CoV-2 antibodies and a mis-coordination between their SARS-CoV-2-specific T and B cell responses. Our analysis suggested an improper crosstalk between the cellular and humoral adaptive immunity in LC, which can lead to immune dysregulation, inflammation and clinical symptoms associated with this debilitating condition.


Assuntos
COVID-19 , SARS-CoV-2 , Feminino , Masculino , Humanos , Síndrome de COVID-19 Pós-Aguda , Linfócitos T CD8-Positivos , Imunidade Humoral , Anticorpos Antivirais , Inflamação
3.
Nat Immunol ; 24(10): 1616-1627, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37667052

RESUMO

Millions of people are suffering from Long COVID or post-acute sequelae of COVID-19 (PASC). Several biological factors have emerged as potential drivers of PASC pathology. Some individuals with PASC may not fully clear the coronavirus SARS-CoV-2 after acute infection. Instead, replicating virus and/or viral RNA-potentially capable of being translated to produce viral proteins-persist in tissue as a 'reservoir'. This reservoir could modulate host immune responses or release viral proteins into the circulation. Here we review studies that have identified SARS-CoV-2 RNA/protein or immune responses indicative of a SARS-CoV-2 reservoir in PASC samples. Mechanisms by which a SARS-CoV-2 reservoir may contribute to PASC pathology, including coagulation, microbiome and neuroimmune abnormalities, are delineated. We identify research priorities to guide the further study of a SARS-CoV-2 reservoir in PASC, with the goal that clinical trials of antivirals or other therapeutics with potential to clear a SARS-CoV-2 reservoir are accelerated.


Assuntos
COVID-19 , Humanos , Síndrome de COVID-19 Pós-Aguda , RNA Viral/genética , SARS-CoV-2 , Antivirais , Progressão da Doença
4.
Nat Immunol ; 23(3): 360-370, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-35210622

RESUMO

Host genetic and environmental factors including age, biological sex, diet, geographical location, microbiome composition and metabolites converge to influence innate and adaptive immune responses to vaccines. Failure to understand and account for these factors when investigating severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) vaccine efficacy may impair the development of the next generation of vaccines. Most studies aimed at identifying mechanisms of vaccine-mediated immune protection have focused on adaptive immune responses. It is well established, however, that mobilization of the innate immune response is essential to the development of effective cellular and humoral immunity. A comprehensive understanding of the innate immune response and environmental factors that contribute to the development of broad and durable cellular and humoral immune responses to SARS-CoV-2 and other vaccines requires a holistic and unbiased approach. Along with optimization of the immunogen and vectors, the development of adjuvants based on our evolving understanding of how the innate immune system shapes vaccine responses will be essential. Defining the innate immune mechanisms underlying the establishment of long-lived plasma cells and memory T cells could lead to a universal vaccine for coronaviruses, a key biomedical priority.


Assuntos
Variação Biológica da População , Vacinas contra COVID-19/imunologia , COVID-19/epidemiologia , COVID-19/prevenção & controle , Interações Hospedeiro-Patógeno/imunologia , Imunidade , SARS-CoV-2/imunologia , Anticorpos Antivirais , COVID-19/virologia , Vacinas contra COVID-19/administração & dosagem , Saúde Global , Interações entre Hospedeiro e Microrganismos/imunologia , Humanos , Imunidade Humoral , Imunidade Inata , Imunogenicidade da Vacina , Memória Imunológica , Microbiota/imunologia , Pandemias , Vigilância em Saúde Pública , Vacinação
5.
Cell ; 179(4): 880-894.e10, 2019 10 31.
Artigo em Inglês | MEDLINE | ID: mdl-31668804

RESUMO

Current approaches to reducing the latent HIV reservoir entail first reactivating virus-containing cells to become visible to the immune system. A critical second step is killing these cells to reduce reservoir size. Endogenous cytotoxic T-lymphocytes (CTLs) may not be adequate because of cellular exhaustion and the evolution of CTL-resistant viruses. We have designed a universal CAR-T cell platform based on CTLs engineered to bind a variety of broadly neutralizing anti-HIV antibodies. We show that this platform, convertibleCAR-T cells, effectively kills HIV-infected, but not uninfected, CD4 T cells from blood, tonsil, or spleen and only when armed with anti-HIV antibodies. convertibleCAR-T cells also kill within 48 h more than half of the inducible reservoir found in blood of HIV-infected individuals on antiretroviral therapy. The modularity of convertibleCAR-T cell system, which allows multiplexing with several anti-HIV antibodies yielding greater breadth and control, makes it a promising tool for attacking the latent HIV reservoir.


Assuntos
Anticorpos Anti-Idiotípicos/farmacologia , Infecções por HIV/terapia , Imunoterapia Adotiva , Replicação Viral/genética , Animais , Anticorpos Anti-Idiotípicos/imunologia , Células HEK293 , Infecções por HIV/genética , Infecções por HIV/imunologia , Infecções por HIV/virologia , HIV-1/imunologia , HIV-1/patogenicidade , Humanos , Camundongos , Tonsila Palatina/imunologia , Tonsila Palatina/metabolismo , Cultura Primária de Células , Baço/imunologia , Baço/metabolismo , Linfócitos T Citotóxicos/imunologia , Latência Viral/imunologia , Replicação Viral/imunologia
6.
Nat Immunol ; 21(5): 578-587, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-32231298

RESUMO

The pool of beta cell-specific CD8+ T cells in type 1 diabetes (T1D) sustains an autoreactive potential despite having access to a constant source of antigen. To investigate the long-lived nature of these cells, we established a DNA methylation-based T cell 'multipotency index' and found that beta cell-specific CD8+ T cells retained a stem-like epigenetic multipotency score. Single-cell assay for transposase-accessible chromatin using sequencing confirmed the coexistence of naive and effector-associated epigenetic programs in individual beta cell-specific CD8+ T cells. Assessment of beta cell-specific CD8+ T cell anatomical distribution and the establishment of stem-associated epigenetic programs revealed that self-reactive CD8+ T cells isolated from murine lymphoid tissue retained developmentally plastic phenotypic and epigenetic profiles relative to the same cells isolated from the pancreas. Collectively, these data provide new insight into the longevity of beta cell-specific CD8+ T cell responses and document the use of this methylation-based multipotency index for investigating human and mouse CD8+ T cell differentiation.


Assuntos
Linfócitos T CD8-Positivos/fisiologia , Diabetes Mellitus Tipo 1/imunologia , Células Secretoras de Insulina/imunologia , Células-Tronco Pluripotentes/fisiologia , Adolescente , Adulto , Animais , Autoantígenos/imunologia , Plasticidade Celular , Células Cultivadas , Metilação de DNA , Epigênese Genética , Feminino , Citometria de Fluxo , Humanos , Memória Imunológica , Masculino , Camundongos , Análise de Célula Única , Adulto Jovem
7.
Nat Immunol ; 21(3): 274-286, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-32066947

RESUMO

Human immunodeficiency virus 1 (HIV-1) infection is associated with heightened inflammation and excess risk of cardiovascular disease, cancer and other complications. These pathologies persist despite antiretroviral therapy. In two independent cohorts, we found that innate lymphoid cells (ILCs) were depleted in the blood and gut of people with HIV-1, even with effective antiretroviral therapy. ILC depletion was associated with neutrophil infiltration of the gut lamina propria, type 1 interferon activation, increased microbial translocation and natural killer (NK) cell skewing towards an inflammatory state, with chromatin structure and phenotype typical of WNT transcription factor TCF7-dependent memory T cells. Cytokines that are elevated during acute HIV-1 infection reproduced the ILC and NK cell abnormalities ex vivo. These results show that inflammatory cytokines associated with HIV-1 infection irreversibly disrupt ILCs. This results in loss of gut epithelial integrity, microbial translocation and memory NK cells with heightened inflammatory potential, and explains the chronic inflammation in people with HIV-1.


Assuntos
Citocinas/sangue , HIV-1/imunologia , HIV-1/patogenicidade , Imunidade Inata , Células Matadoras Naturais/imunologia , Linfócitos/imunologia , Fator 1 de Transcrição de Linfócitos T/imunologia , Regulação da Expressão Gênica , Infecções por HIV/genética , Infecções por HIV/imunologia , Infecções por HIV/virologia , Homeostase/imunologia , Humanos , Memória Imunológica , Técnicas In Vitro , Inflamação/genética , Inflamação/imunologia , Inflamação/virologia , Fator 1 de Transcrição de Linfócitos T/genética , Via de Sinalização Wnt/imunologia
9.
Nat Immunol ; 20(7): 824-834, 2019 07.
Artigo em Inglês | MEDLINE | ID: mdl-31209403

RESUMO

Multiple genome-wide studies have identified associations between outcome of human immunodeficiency virus (HIV) infection and polymorphisms in and around the gene encoding the HIV co-receptor CCR5, but the functional basis for the strongest of these associations, rs1015164A/G, is unknown. We found that rs1015164 marks variation in an activating transcription factor 1 binding site that controls expression of the antisense long noncoding RNA (lncRNA) CCR5AS. Knockdown or enhancement of CCR5AS expression resulted in a corresponding change in CCR5 expression on CD4+ T cells. CCR5AS interfered with interactions between the RNA-binding protein Raly and the CCR5 3' untranslated region, protecting CCR5 messenger RNA from Raly-mediated degradation. Reduction in CCR5 expression through inhibition of CCR5AS diminished infection of CD4+ T cells with CCR5-tropic HIV in vitro. These data represent a rare determination of the functional importance of a genome-wide disease association where expression of a lncRNA affects HIV infection and disease progression.


Assuntos
Regulação da Expressão Gênica , Variação Genética , Infecções por HIV/genética , Infecções por HIV/virologia , HIV-1 , RNA Antissenso/genética , RNA Longo não Codificante/genética , Receptores CCR5/genética , Regiões 3' não Traduzidas , Alelos , Biomarcadores , Linfócitos T CD4-Positivos/imunologia , Linfócitos T CD4-Positivos/metabolismo , Linfócitos T CD4-Positivos/virologia , Membrana Celular/metabolismo , Genes Reporter , Genótipo , Infecções por HIV/metabolismo , Humanos , Desequilíbrio de Ligação , Polimorfismo de Nucleotídeo Único , Grupos Populacionais/genética , Prognóstico , Estabilidade de RNA , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Receptores CCR5/metabolismo , Carga Viral
10.
Cell ; 166(4): 1004-1015, 2016 Aug 11.
Artigo em Inglês | MEDLINE | ID: mdl-27453467

RESUMO

Targeted HIV cure strategies require definition of the mechanisms that maintain the virus. Here, we tracked HIV replication and the persistence of infected CD4 T cells in individuals with natural virologic control by sequencing viruses, T cell receptor genes, HIV integration sites, and cellular transcriptomes. Our results revealed three mechanisms of HIV persistence operating within distinct anatomic and functional compartments. In lymph node, we detected viruses with genetic and transcriptional attributes of active replication in both T follicular helper (TFH) cells and non-TFH memory cells. In blood, we detected inducible proviruses of archival origin among highly differentiated, clonally expanded cells. Linking the lymph node and blood was a small population of circulating cells harboring inducible proviruses of recent origin. Thus, HIV replication in lymphoid tissue, clonal expansion of infected cells, and recirculation of recently infected cells act together to maintain the virus in HIV controllers despite effective antiviral immunity.


Assuntos
Infecções por HIV/virologia , HIV-1/fisiologia , Sangue/virologia , Linfócitos T CD4-Positivos/imunologia , Doença Crônica , DNA Viral/genética , Infecções por HIV/imunologia , HIV-1/genética , Humanos , Leucócitos Mononucleares , Linfonodos/virologia , Provírus/imunologia , Análise de Sequência de DNA , Fenômenos Fisiológicos Virais , Replicação Viral
12.
Immunity ; 54(10): 2372-2384.e7, 2021 10 12.
Artigo em Inglês | MEDLINE | ID: mdl-34496223

RESUMO

Spontaneous control of HIV infection has been repeatedly linked to antiviral CD8+ T cells but is not always permanent. To address mechanisms of durable and aborted control of viremia, we evaluated immunologic and virologic parameters longitudinally among 34 HIV-infected subjects with differential outcomes. Despite sustained recognition of autologous virus, HIV-specific proliferative and cytolytic T cell effector functions became selectively and intrinsically impaired prior to aborted control. Longitudinal transcriptomic profiling of functionally impaired HIV-specific CD8+ T cells revealed altered expression of genes related to activation, cytokine-mediated signaling, and cell cycle regulation, including increased expression of the antiproliferative transcription factor KLF2 but not of genes associated with canonical exhaustion. Lymphoid HIV-specific CD8+ T cells also exhibited poor functionality during aborted control relative to durable control. Our results identify selective functional impairment of HIV-specific CD8+ T cells as prognostic of impending aborted HIV control, with implications for clinical monitoring and immunotherapeutic strategies.


Assuntos
Linfócitos T CD8-Positivos/imunologia , Infecções por HIV/imunologia , Infecções por HIV/virologia , Viremia/imunologia , Viremia/virologia , Adulto , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Recidiva
13.
Nature ; 614(7947): 318-325, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36599978

RESUMO

Rare CD4 T cells that contain HIV under antiretroviral therapy represent an important barrier to HIV cure1-3, but the infeasibility of isolating and characterizing these cells in their natural state has led to uncertainty about whether they possess distinctive attributes that HIV cure-directed therapies might exploit. Here we address this challenge using a microfluidic technology that isolates the transcriptomes of HIV-infected cells based solely on the detection of HIV DNA. HIV-DNA+ memory CD4 T cells in the blood from people receiving antiretroviral therapy showed inhibition of six transcriptomic pathways, including death receptor signalling, necroptosis signalling and antiproliferative Gα12/13 signalling. Moreover, two groups of genes identified by network co-expression analysis were significantly associated with HIV-DNA+ cells. These genes (n = 145) accounted for just 0.81% of the measured transcriptome and included negative regulators of HIV transcription that were higher in HIV-DNA+ cells, positive regulators of HIV transcription that were lower in HIV-DNA+ cells, and other genes involved in RNA processing, negative regulation of mRNA translation, and regulation of cell state and fate. These findings reveal that HIV-infected memory CD4 T cells under antiretroviral therapy are a distinctive population with host gene expression patterns that favour HIV silencing, cell survival and cell proliferation, with important implications for the development of HIV cure strategies.


Assuntos
Linfócitos T CD4-Positivos , Regulação Viral da Expressão Gênica , Infecções por HIV , HIV-1 , Latência Viral , Humanos , Linfócitos T CD4-Positivos/citologia , Linfócitos T CD4-Positivos/efeitos dos fármacos , Linfócitos T CD4-Positivos/metabolismo , Linfócitos T CD4-Positivos/virologia , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , DNA Viral/isolamento & purificação , Regulação Viral da Expressão Gênica/efeitos dos fármacos , Infecções por HIV/tratamento farmacológico , Infecções por HIV/genética , Infecções por HIV/imunologia , Infecções por HIV/virologia , HIV-1/efeitos dos fármacos , HIV-1/genética , HIV-1/isolamento & purificação , HIV-1/patogenicidade , Memória Imunológica , Microfluídica , Necroptose/efeitos dos fármacos , Transdução de Sinais/efeitos dos fármacos , Transcriptoma/efeitos dos fármacos , Latência Viral/efeitos dos fármacos , Antirretrovirais/farmacologia , Antirretrovirais/uso terapêutico
14.
Nature ; 620(7972): 128-136, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37468623

RESUMO

Studies have demonstrated that at least 20% of individuals infected with SARS-CoV-2 remain asymptomatic1-4. Although most global efforts have focused on severe illness in COVID-19, examining asymptomatic infection provides a unique opportunity to consider early immunological features that promote rapid viral clearance. Here, postulating that variation in the human leukocyte antigen (HLA) loci may underly processes mediating asymptomatic infection, we enrolled 29,947 individuals, for whom high-resolution HLA genotyping data were available, in a smartphone-based study designed to track COVID-19 symptoms and outcomes. Our discovery cohort (n = 1,428) comprised unvaccinated individuals who reported a positive test result for SARS-CoV-2. We tested for association of five HLA loci with disease course and identified a strong association between HLA-B*15:01 and asymptomatic infection, observed in two independent cohorts. Suggesting that this genetic association is due to pre-existing T cell immunity, we show that T cells from pre-pandemic samples from individuals carrying HLA-B*15:01 were reactive to the immunodominant SARS-CoV-2 S-derived peptide NQKLIANQF. The majority of the reactive T cells displayed a memory phenotype, were highly polyfunctional and were cross-reactive to a peptide derived from seasonal coronaviruses. The crystal structure of HLA-B*15:01-peptide complexes demonstrates that the peptides NQKLIANQF and NQKLIANAF (from OC43-CoV and HKU1-CoV) share a similar ability to be stabilized and presented by HLA-B*15:01. Finally, we show that the structural similarity of the peptides underpins T cell cross-reactivity of high-affinity public T cell receptors, providing the molecular basis for HLA-B*15:01-mediated pre-existing immunity.


Assuntos
Alelos , Infecções Assintomáticas , COVID-19 , Antígenos HLA-B , Humanos , COVID-19/genética , COVID-19/imunologia , COVID-19/fisiopatologia , COVID-19/virologia , Epitopos de Linfócito T/imunologia , Peptídeos/imunologia , SARS-CoV-2/imunologia , Antígenos HLA-B/imunologia , Estudos de Coortes , Linfócitos T/imunologia , Epitopos Imunodominantes/imunologia , Reações Cruzadas/imunologia , Glicoproteína da Espícula de Coronavírus/química , Glicoproteína da Espícula de Coronavírus/imunologia
15.
EMBO J ; 42(16): e114153, 2023 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-37382276

RESUMO

Innate lymphoid cells (ILCs) are a diverse population of cells that include NK cells and contribute to tissue homeostasis and repair, inflammation, and provide protection from infection. The interplay between human blood ILCs, as well as their responses to HIV-1 infection, remains poorly understood. This study used transcriptional and chromatin profiling to explore these questions. Transcriptional profiling and flow cytometry analysis support that there are four main ILC subsets found in human blood. Unlike in mice, human NK cells expressed the tissue repair protein amphiregulin (AREG). AREG production was induced by TCF7/WNT, IL-2, and IL-15, and inhibited by TGFB1, a cytokine increased in people living with HIV-1. In HIV-1 infection, the percentage of AREG+ NK cells correlated positively with the numbers of ILCs and CD4+ T cells but negatively with the concentration of inflammatory cytokine IL-6. NK-cell knockout of the TGFB1-stimulated WNT antagonist RUNX3 increased AREG production. Antiviral gene expression was increased in all ILC subsets from HIV-1 viremic people, and anti-inflammatory gene MYDGF was increased in an NK-cell subset from HIV-1-infected people whose viral load was undetectable in the absence of antiretroviral therapy. The percentage of defective NK cells in people living with HIV-1 correlated inversely with ILC percentage and CD4+ T-cell counts. CD4+ T cells and their production of IL-2 prevented the loss of NK-cell function by activating mTOR. These studies clarify how ILC subsets are interrelated and provide insight into how HIV-1 infection disrupts NK cells, including an uncharacterized homeostatic function in NK cells.


Assuntos
Infecções por HIV , HIV-1 , Humanos , Camundongos , Animais , Imunidade Inata , Linfócitos/metabolismo , HIV-1/metabolismo , Interleucina-2/metabolismo , Cromatina , Células Matadoras Naturais , Citocinas , Infecções por HIV/genética
16.
Immunity ; 46(1): 1-3, 2017 01 17.
Artigo em Inglês | MEDLINE | ID: mdl-28099858

RESUMO

Understanding the factors that promote or prevent HIV transmission remains a critical component of the global battle against HIV/AIDS. Gosmann et al. (2017) reveal a putative role for the vaginal microbiome in modulating heterosexual transmission of HIV, uncovering a potential strategy for protecting women from acquisition of the virus.


Assuntos
Infecções por HIV/prevenção & controle , Mucosa , Feminino , Humanos , Vagina
17.
Nature ; 585(7824): 261-267, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32848246

RESUMO

Sustained, drug-free control of HIV-1 replication is naturally achieved in less than 0.5% of infected individuals (here termed 'elite controllers'), despite the presence of a replication-competent viral reservoir1. Inducing such an ability to spontaneously maintain undetectable plasma viraemia is a major objective of HIV-1 cure research, but the characteristics of proviral reservoirs in elite controllers remain to be determined. Here, using next-generation sequencing of near-full-length single HIV-1 genomes and corresponding chromosomal integration sites, we show that the proviral reservoirs of elite controllers frequently consist of oligoclonal to near-monoclonal clusters of intact proviral sequences. In contrast to individuals treated with long-term antiretroviral therapy, intact proviral sequences from elite controllers were integrated at highly distinct sites in the human genome and were preferentially located in centromeric satellite DNA or in Krüppel-associated box domain-containing zinc finger genes on chromosome 19, both of which are associated with heterochromatin features. Moreover, the integration sites of intact proviral sequences from elite controllers showed an increased distance to transcriptional start sites and accessible chromatin of the host genome and were enriched in repressive chromatin marks. These data suggest that a distinct configuration of the proviral reservoir represents a structural correlate of natural viral control, and that the quality, rather than the quantity, of viral reservoirs can be an important distinguishing feature for a functional cure of HIV-1 infection. Moreover, in one elite controller, we were unable to detect intact proviral sequences despite analysing more than 1.5 billion peripheral blood mononuclear cells, which raises the possibility that a sterilizing cure of HIV-1 infection, which has previously been observed only following allogeneic haematopoietic stem cell transplantation2,3, may be feasible in rare instances.


Assuntos
Inativação Gênica , Infecções por HIV/genética , Infecções por HIV/virologia , HIV-1/genética , Heterocromatina/genética , Provírus/genética , Integração Viral/genética , Latência Viral/genética , Adulto , Idoso , Centrômero/genética , Cromossomos Humanos Par 19/genética , DNA Satélite/genética , Feminino , Genoma Viral/genética , Infecções por HIV/sangue , HIV-1/isolamento & purificação , Heterocromatina/metabolismo , Humanos , Masculino , Pessoa de Meia-Idade , Provírus/isolamento & purificação , Proteínas Repressoras/genética , Sítio de Iniciação de Transcrição
18.
Eur J Immunol ; : e2350809, 2024 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-38727191

RESUMO

HIV infection is associated with gut dysbiosis, and microbiome variability may affect HIV control when antiretroviral therapy (ART) is stopped. The TLR7 agonist, vesatolimod, was previously associated with a modest delay in viral rebound following analytical treatment interruption in HIV controllers (HCs). Using a retrospective analysis of fecal samples from HCs treated with vesatolimod or placebo (NCT03060447), people with chronic HIV (CH; NCT02858401) or without HIV (PWOH), we examined fecal microbiome profile in HCs before/after treatment, and in CH and PWOH. Microbiome diversity and abundance were compared between groups to investigate the association between specific phyla/species, immune biomarkers, and viral outcomes during treatment interruption. Although there were no significant differences in gut microbiome diversity between people with and without HIV, HCs, and CH shared common features that distinguished them from PWOH. there was a trend toward greater microbiome diversity among HCs. Treatment with vesatolimod reduced dysbiosis in HCs. Firmicutes positively correlated with T-cell activation, while Bacteroidetes and Euryarchaeota inversely correlated with TLR7-mediated immune activation. Specific types of fecal microbiome abundance (e.g. Alistipes putredinis) positively correlated with HIV rebound. In conclusion, variability in the composition of the fecal microbiome is associated with markers of immune activation following vesatolimod treatment and ART interruption.

19.
PLoS Pathog ; 19(11): e1011114, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-38019897

RESUMO

The major barrier to an HIV cure is the HIV reservoir: latently-infected cells that persist despite effective antiretroviral therapy (ART). There have been few cohort-based studies evaluating host genomic or transcriptomic predictors of the HIV reservoir. We performed host RNA sequencing and HIV reservoir quantification (total DNA [tDNA], unspliced RNA [usRNA], intact DNA) from peripheral CD4+ T cells from 191 ART-suppressed people with HIV (PWH). After adjusting for nadir CD4+ count, timing of ART initiation, and genetic ancestry, we identified two host genes for which higher expression was significantly associated with smaller total DNA viral reservoir size, P3H3 and NBL1, both known tumor suppressor genes. We then identified 17 host genes for which lower expression was associated with higher residual transcription (HIV usRNA). These included novel associations with membrane channel (KCNJ2, GJB2), inflammasome (IL1A, CSF3, TNFAIP5, TNFAIP6, TNFAIP9, CXCL3, CXCL10), and innate immunity (TLR7) genes (FDR-adjusted q<0.05). Gene set enrichment analyses further identified significant associations of HIV usRNA with TLR4/microbial translocation (q = 0.006), IL-1/NRLP3 inflammasome (q = 0.008), and IL-10 (q = 0.037) signaling. Protein validation assays using ELISA and multiplex cytokine assays supported these observed inverse host gene correlations, with P3H3, IL-10, and TNF-α protein associations achieving statistical significance (p<0.05). Plasma IL-10 was also significantly inversely associated with HIV DNA (p = 0.016). HIV intact DNA was not associated with differential host gene expression, although this may have been due to a large number of undetectable values in our study. To our knowledge, this is the largest host transcriptomic study of the HIV reservoir. Our findings suggest that host gene expression may vary in response to the transcriptionally active reservoir and that changes in cellular proliferation genes may influence the size of the HIV reservoir. These findings add important data to the limited host genetic HIV reservoir studies to date.


Assuntos
Infecções por HIV , HIV-1 , Humanos , Interleucina-10 , Inflamassomos , HIV-1/genética , Infecções por HIV/tratamento farmacológico , Infecções por HIV/genética , Linfócitos T CD4-Positivos , Imunidade Inata/genética , Genes Supressores de Tumor , Expressão Gênica , DNA , Carga Viral
20.
Trends Immunol ; 43(4): 268-270, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-35272932

RESUMO

Intense investigation into the predictors and determinants of post-acute sequelae of SARS-CoV-2 infection (PASC), including 'long COVID', is underway. Recent studies provide clues to the mechanisms that might drive this condition, with the goal of identifying host or virus factors that can be intervened upon to prevent or reverse PASC.


Assuntos
COVID-19 , COVID-19/complicações , Progressão da Doença , Humanos , SARS-CoV-2 , Síndrome de COVID-19 Pós-Aguda
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA