Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Soft Matter ; 20(18): 3732-3741, 2024 May 08.
Artigo em Inglês | MEDLINE | ID: mdl-38647097

RESUMO

Superparamagnetic iron oxide nanoparticles (SPIONs) have attracted significant attention because of their nanoscale magnetic properties. SPION aggregates may afford emergent properties, resulting from dipole-dipole interactions between neighbors. Such aggregates can display internal order, with high packing fractions (>20%), and can be stabilized with block co-polymers (BCPs), permitting design of tunable composites for potential nanomedicine, data storage, and electronic sensing applications. Despite the routine use of magnetic fields for aggregate actuation, the impact of those fields on polymer structure, SPION ordering, and magnetic properties is not fully understood. Here, we report that external magnetic fields can induce ordering in SPION aggregates that affect their structure, inter-SPION distance, magnetic properties, and composite Tg. SPION aggregates were synthesized in the presence or absence of magnetic fields or exposed to magnetic fields post-synthesis. They were characterized using transmission electron microscopy (TEM), small angle X-ray scattering (SAXS), superconducting quantum interference device (SQUID) analysis, and differential scanning calorimetry (DSC). SPION aggregate properties depended on the timing of field application. Magnetic field application during synthesis encouraged preservation of SPION chain aggregates stabilized by polymer coatings even after removal of the field, whereas post synthesis application triggered subtle internal reordering, as indicated by increased blocking temperature (TB), that was not observed via SAXS or TEM. These results suggest that magnetic fields are a simple, yet powerful tool to tailor the structure, ordering, and magnetic properties of polymer-stabilized SPION nanocomposites.

2.
Nano Lett ; 19(12): 8469-8475, 2019 12 11.
Artigo em Inglês | MEDLINE | ID: mdl-31664841

RESUMO

DNA origami mechanisms offer promising tools for precision nanomanipulation of molecules or nanomaterials. Recent advances have extended the function of individual DNA origami devices to material scales via hierarchical assemblies. However, achieving rapid and precise control of large conformational changes in hierarchical assemblies remains a critical challenge. Here, we demonstrate a method for controlling DNA origami-nanoparticle assemblies through a multiscale approach, in which nanoparticles impart control on the conformation of individual DNA origami mechanisms, whereas DNA origami assemblies control the conformation of nanoparticle arrays. Specifically, we show that the angular distributions of DNA origami hinge mechanisms are tunable as a function of nanoparticle size and distance from the hinge vertex. We selectively adjust the affinity of nanoparticle binding sites, resulting in hinge actuation via DNA melting without releasing the nanoparticle, thereby enabling rapid and reversible temperature-based actuation. Finally, we demonstrate this rapid actuation in DNA origami-nanoparticle arrays of length scales extending over a micron. These results provide guiding principles toward the design of dynamic, DNA-origami hierarchical materials capable of storing and releasing mechanical energy.


Assuntos
DNA/química , Nanopartículas/química , Nanopartículas/ultraestrutura , Tamanho da Partícula
3.
J Chem Phys ; 151(14): 144706, 2019 Oct 14.
Artigo em Inglês | MEDLINE | ID: mdl-31615228

RESUMO

Quantum dot (QD) biological imaging and sensing applications often require surface modification with single-stranded deoxyribonucleic acid (ssDNA) oligonucleotides. Furthermore, ssDNA conjugation can be leveraged for precision QD templating via higher-order DNA nanostructures to exploit emergent behaviors in photonic applications. Use of ssDNA-QDs across these platforms requires compact, controlled conjugation that engenders QD stability over a wide pH range and in solutions of high ionic strength. However, current ssDNA-QD conjugation approaches suffer from limitations, such as the requirement for thick coatings, low control over ssDNA labeling density, requirement of large amounts of ssDNA, or low colloidal or photostability, restraining implementation in many applications. Here, we combine thin, multidentate, phytochelatin-3 (PC3) QD passivation techniques with strain-promoted copper-free alkyne-azide click chemistry to yield functional ssDNA-QDs with high stability. This process was broadly applicable across QD sizes (i.e., λem = 540, 560, 600 nm), ssDNA lengths (i.e., 10-16 base pairs, bps), and sequences (poly thymine, mixed bps). The resulting compact ssDNA-QDs displayed a fluorescence quenching efficiency of up to 89% by hybridization with complementary ssDNA-AuNPs. Furthermore, ssDNA-QDs were successfully incorporated with higher-order DNA origami nanostructure templates. Thus, this approach, combining PC3 passivation with click chemistry, generates ssDNA-PC3-QDs that enable emergent QD properties in DNA-based devices and applications.


Assuntos
DNA de Cadeia Simples/química , Nanocompostos/química , Pontos Quânticos/química , Alcinos/química , Azidas/química , Compostos de Cádmio/química , Química Click , Fluorescência , Ouro/química , Nanopartículas Metálicas/química , Hibridização de Ácido Nucleico , Oligodesoxirribonucleotídeos/química , Fitoquelatinas/química , Poli T/química , Compostos de Selênio/química , Sulfetos/química , Propriedades de Superfície , Compostos de Zinco/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA