Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Phys Rev Lett ; 108(5): 052504, 2012 Feb 03.
Artigo em Inglês | MEDLINE | ID: mdl-22400930

RESUMO

The first direct mass measurement of {6}He has been performed with the TITAN Penning trap mass spectrometer at the ISAC facility. In addition, the mass of {8}He was determined with improved precision over our previous measurement. The obtained masses are m({6}He)=6.018 885 883(57) u and m({8}He)=8.033 934 44(11) u. The {6}He value shows a deviation from the literature of 4σ. With these new mass values and the previously measured atomic isotope shifts we obtain charge radii of 2.060(8) and 1.959(16) fm for {6}He and {8}He, respectively. We present a detailed comparison to nuclear theory for {6}He, including new hyperspherical harmonics results. A correlation plot of the point-proton radius with the two-neutron separation energy demonstrates clearly the importance of three-nucleon forces.

2.
Phys Rev Lett ; 109(3): 032506, 2012 Jul 20.
Artigo em Inglês | MEDLINE | ID: mdl-22861844

RESUMO

We present precision Penning trap mass measurements of neutron-rich calcium and potassium isotopes in the vicinity of neutron number N=32. Using the TITAN system, the mass of 51K was measured for the first time, and the precision of the (51,52)Ca mass values were improved significantly. The new mass values show a dramatic increase of the binding energy compared to those reported in the atomic mass evaluation. In particular, 52Ca is more bound by 1.74 MeV, and the behavior with neutron number deviates substantially from the tabulated values. An increased binding was predicted recently based on calculations that include three-nucleon (3N) forces. We present a comparison to improved calculations, which agree remarkably with the evolution of masses with neutron number, making neutron-rich calcium isotopes an exciting region to probe 3N forces.

3.
Phys Rev Lett ; 107(27): 272501, 2011 Dec 30.
Artigo em Inglês | MEDLINE | ID: mdl-22243307

RESUMO

Penning trap mass measurements of short-lived nuclides have been performed for the first time with highly charged ions, using the TITAN facility at TRIUMF. Compared to singly charged ions, this provides an improvement in experimental precision that scales with the charge state q. Neutron-deficient Rb isotopes have been charge bred in an electron beam ion trap to q=8-12+ prior to injection into the Penning trap. In combination with the Ramsey excitation scheme, this unique setup creating low energy, highly charged ions at a radioactive beam facility opens the door to unrivaled precision with gains of 1-2 orders of magnitude. The method is particularly suited for short-lived nuclides such as the superallowed ß emitter 74Rb (T(1/2)=65 ms). The determination of its atomic mass and an improved Q(EC) value are presented.

4.
Rev Sci Instrum ; 83(2): 02A912, 2012 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-22380253

RESUMO

TRIUMF's Ion Trap for Atomic and Nuclear science (TITAN) constitutes the only high precision mass measurement setup coupled to a rare isotope facility capable of increasing the charge state of short-lived nuclides prior to the actual mass determination in a Penning trap. Recent developments around TITAN's charge breeder, the electron beam ion trap, form the basis for several successful experiments on radioactive isotopes with half-lives as low as 65 ms and in charge states as high as 22+.

6.
Phys Rev Lett ; 101(20): 202501, 2008 Nov 14.
Artigo em Inglês | MEDLINE | ID: mdl-19113333

RESUMO

In this Letter, we report a new mass for 11Li using the trapping experiment TITAN at TRIUMF's ISAC facility. This is by far the shortest-lived nuclide, t_{1/2}=8.8 ms, for which a mass measurement has ever been performed with a Penning trap. Combined with our mass measurements of ;{8,9}Li we derive a new two-neutron separation energy of 369.15(65) keV: a factor of 7 more precise than the best previous value. This new value is a critical ingredient for the determination of the halo charge radius from isotope-shift measurements. We also report results from state-of-the-art atomic-physics calculations using the new mass and extract a new charge radius for 11Li. This result is a remarkable confluence of nuclear and atomic physics.

7.
Phys Rev Lett ; 101(1): 012501, 2008 Jul 04.
Artigo em Inglês | MEDLINE | ID: mdl-18764106

RESUMO

A high-precision Penning trap mass measurement of the exotic 8He nuclide (T(1/2)=119 ms) has been carried out resulting in a reduction of the uncertainty of the halo binding energy by over an order of magnitude. The new mass, determined with a relative uncertainty of 9.2 x 10(-8) (deltam=690 eV) is 13 keV less bound than the previously accepted value. The mass measurement is of great relevance for the recent charge-radius measurement of 8He [P. Mueller, Phys. Rev. Lett. 99, 252501 (2007).10.1103/PhysRevLett.99.252501]. The 8He mass is the first result from the newly-commissioned Penning trap: TITAN (TRIUMF's Ion Trap for Atomic and Nuclear science) at the ISAC (Isotope Separator and Accelerator) radioactive beam facility at TRIUMF.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA