Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 22
Filtrar
1.
Ecol Lett ; 25(6): 1471-1482, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-35460530

RESUMO

Lack of tree fecundity data across climatic gradients precludes the analysis of how seed supply contributes to global variation in forest regeneration and biotic interactions responsible for biodiversity. A global synthesis of raw seedproduction data shows a 250-fold increase in seed abundance from cold-dry to warm-wet climates, driven primarily by a 100-fold increase in seed production for a given tree size. The modest (threefold) increase in forest productivity across the same climate gradient cannot explain the magnitudes of these trends. The increase in seeds per tree can arise from adaptive evolution driven by intense species interactions or from the direct effects of a warm, moist climate on tree fecundity. Either way, the massive differences in seed supply ramify through food webs potentially explaining a disproportionate role for species interactions in the wet tropics.


Assuntos
Florestas , Árvores , Biodiversidade , Clima , Fertilidade , Sementes
2.
Int J Biometeorol ; 65(3): 369-379, 2021 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-31352524

RESUMO

Leaf phenology is a major driver of ecosystem functioning in temperate forests and a robust indicator of climate change. Both the inter-annual and inter-population variability of leaf phenology have received much attention in the literature; in contrast, the within-population variability of leaf phenology has been far less studied. Beyond its impact on individual tree physiological processes, the within-population variability of leaf phenology can affect the estimation of the average budburst or leaf senescence dates at the population scale. Here, we monitored the progress of spring and autumn leaf phenology over 14 tree populations (9 tree species) in six European forests over the period of 2011 to 2018 (yielding 16 site-years of data for spring, 14 for autumn). We monitored 27 to 512 (with a median of 62) individuals per population. We quantified the within-population variability of leaf phenology as the standard deviation of the distribution of individual dates of budburst or leaf senescence (SDBBi and SDLSi, respectively). Given the natural variability of phenological dates occurring in our tree populations, we estimated from the data that a minimum sample size of 28 (resp. 23) individuals, are required to estimate SDBBi (resp. SDLSi) with a precision of 3 (resp. 7) days. The within-population of leaf senescence (average SDLSi = 8.5 days) was on average two times larger than for budburst (average SDBBi = 4.0 days). We evidenced that warmer temperature during the budburst period and a late average budburst date were associated with a lower SDBBi, as a result of a quicker spread of budburst in tree populations, with a strong species effect. Regarding autumn phenology, we observed that later senescence and warm temperatures during the senescence period were linked with a high SDLSi, with a strong species effect. The shares of variance explained by our models were modest suggesting that other factors likely influence the within-population variation in leaf phenology. For instance, a detailed analysis revealed that summer temperatures were negatively correlated with a lower SDLSi.


Assuntos
Ecossistema , Árvores , Humanos , Folhas de Planta , Estações do Ano , Temperatura
3.
Glob Chang Biol ; 26(12): 6916-6930, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-33022860

RESUMO

We apply and compare three widely applicable methods for estimating ecosystem transpiration (T) from eddy covariance (EC) data across 251 FLUXNET sites globally. All three methods are based on the coupled water and carbon relationship, but they differ in assumptions and parameterizations. Intercomparison of the three daily T estimates shows high correlation among methods (R between .89 and .94), but a spread in magnitudes of T/ET (evapotranspiration) from 45% to 77%. When compared at six sites with concurrent EC and sap flow measurements, all three EC-based T estimates show higher correlation to sap flow-based T than EC-based ET. The partitioning methods show expected tendencies of T/ET increasing with dryness (vapor pressure deficit and days since rain) and with leaf area index (LAI). Analysis of 140 sites with high-quality estimates for at least two continuous years shows that T/ET variability was 1.6 times higher across sites than across years. Spatial variability of T/ET was primarily driven by vegetation and soil characteristics (e.g., crop or grass designation, minimum annual LAI, soil coarse fragment volume) rather than climatic variables such as mean/standard deviation of temperature or precipitation. Overall, T and T/ET patterns are plausible and qualitatively consistent among the different water flux partitioning methods implying a significant advance made for estimating and understanding T globally, while the magnitudes remain uncertain. Our results represent the first extensive EC data-based estimates of ecosystem T permitting a data-driven perspective on the role of plants' water use for global water and carbon cycling in a changing climate.


Assuntos
Ecossistema , Transpiração Vegetal , Poaceae , Chuva , Solo , Água
4.
Int J Biometeorol ; 64(4): 663-670, 2020 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-31912307

RESUMO

Phenological cameras have been used over a decade for identifying plant phenological markers (budburst, leaf senescence) and more generally the greenness dynamics of forest canopies. The analysis is usually carried out over the full camera field of view, with no particular analysis of the variability of phenological markers among trees. Here we show that images produced by phenological cameras can be used to quantify the within-population variability of budburst (WPVbb) in temperate deciduous forests. Using seven site-years of image analyses, we report a strong correlation (r2 = 0.97) between the WPVbb determined with a phenological camera and its quantification through ground observation. We show that WPVbb varies strongly (by a factor of 4) from year to year in a given population and that those variations are linked with temperature conditions during the budburst period, with colder springs associated to a higher differentiation of budburst (higher WPVbb) among trees. Deploying our approach at the continental scale, i.e., throughout phenological cameras networks, would improve the understanding of the spatial (across populations) and temporal (across years) variations of WPVbb, which have strong implications on forest functioning, tree fitness and phenological modelling.


Assuntos
Folhas de Planta , Árvores , Florestas , Estações do Ano , Temperatura
5.
Glob Chang Biol ; 25(3): 1089-1105, 2019 03.
Artigo em Inglês | MEDLINE | ID: mdl-30536724

RESUMO

The phenology of wood formation is a critical process to consider for predicting how trees from the temperate and boreal zones may react to climate change. Compared to leaf phenology, however, the determinism of wood phenology is still poorly known. Here, we compared for the first time three alternative ecophysiological model classes (threshold models, heat-sum models and chilling-influenced heat-sum models) and an empirical model in their ability to predict the starting date of xylem cell enlargement in spring, for four major Northern Hemisphere conifers (Larix decidua, Pinus sylvestris, Picea abies and Picea mariana). We fitted models with Bayesian inference to wood phenological data collected for 220 site-years over Europe and Canada. The chilling-influenced heat-sum model received most support for all the four studied species, predicting validation data with a 7.7-day error, which is within one day of the observed data resolution. We conclude that both chilling and forcing temperatures determine the onset of wood formation in Northern Hemisphere conifers. Importantly, the chilling-influenced heat-sum model showed virtually no spatial bias whichever the species, despite the large environmental gradients considered. This suggests that the spring onset of wood formation is far less affected by local adaptation than by environmentally driven plasticity. In a context of climate change, we therefore expect rising winter-spring temperature to exert ambivalent effects on the spring onset of wood formation, tending to hasten it through the accumulation of forcing temperature, but imposing a higher forcing temperature requirement through the lower accumulation of chilling.


Assuntos
Modelos Biológicos , Temperatura , Traqueófitas/crescimento & desenvolvimento , Madeira/crescimento & desenvolvimento , Teorema de Bayes , Canadá , Mudança Climática , Europa (Continente) , Estações do Ano , Xilema/crescimento & desenvolvimento
6.
Glob Chang Biol ; 24(8): 3537-3545, 2018 08.
Artigo em Inglês | MEDLINE | ID: mdl-29460318

RESUMO

Autumn phenology remains a relatively neglected aspect in climate change research, which hinders an accurate assessment of the global carbon cycle and its sensitivity to climate change. Leaf coloration, a key indicator of the growing season end, is thought to be triggered mainly by high or low temperature and drought. However, how the control of leaf coloration is split between temperature and drought is not known for many species. Moreover, whether growing season and autumn temperatures interact in influencing the timing of leaf coloration is not clear. Here, we revealed major climate drivers of leaf coloration dates and their interactions using 154 phenological datasets for four winter deciduous tree species at 89 stations, and the corresponding daily mean/minimum air temperature and precipitation data across China's temperate zone from 1981 to 2012. Results show that temperature is more decisive than drought in causing leaf coloration, and the growing season mean temperature plays a more important role than the autumn mean minimum temperature. Higher growing season temperature and lower autumn minimum temperature would induce earlier leaf coloration date. Moreover, the mean temperature over the growing season correlates positively with the autumn minimum temperature. This implies that growing season mean temperature may offset the requirement of autumn minimum temperature in triggering leaf coloration. Our findings deepen the understanding of leaf coloration mechanisms in winter deciduous trees and suggest that leaf life-span control depended on growing season mean temperature and autumn low temperature control and their interaction are major environmental cues. In the context of climate change, whether leaf coloration date advances or is delayed may depend on intensity of the offset effect of growing season temperature on autumn low temperature.


Assuntos
Mudança Climática , Secas , Temperatura , Árvores/fisiologia , China , Cor , Pigmentação , Folhas de Planta/fisiologia , Populus/fisiologia , Robinia/fisiologia , Salix/fisiologia , Estações do Ano , Ulmus/fisiologia
7.
Glob Chang Biol ; 24(5): 2159-2168, 2018 05.
Artigo em Inglês | MEDLINE | ID: mdl-29245174

RESUMO

Climate warming is substantially shifting the leaf phenological events of plants, and thereby impacting on their individual fitness and also on the structure and functioning of ecosystems. Previous studies have largely focused on the climate impact on spring phenology, and to date the processes underlying leaf senescence and their associated environmental drivers remain poorly understood. In this study, experiments with temperature gradients imposed during the summer and autumn were conducted on saplings of European beech to explore the temperature responses of leaf senescence. An additional warming experiment during winter enabled us to assess the differences in temperature responses of spring leaf-out and autumn leaf senescence. We found that warming significantly delayed the dates of leaf senescence both during summer and autumn warming, with similar temperature sensitivities (6-8 days delay per °C warming), suggesting that, in the absence of water and nutrient limitation, temperature may be a dominant factor controlling the leaf senescence in European beech. Interestingly, we found a significantly larger temperature response of autumn leaf senescence than of spring leaf-out. This suggests a possible larger contribution of delays in autumn senescence, than of the advancement in spring leaf-out, to extending the growing season under future warmer conditions.


Assuntos
Fagus/fisiologia , Folhas de Planta/fisiologia , Estações do Ano , Temperatura , Clima , Mudança Climática , Ecossistema
8.
New Phytol ; 214(1): 180-193, 2017 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-27883190

RESUMO

We aimed to evaluate the importance of modulations of within-tree carbon (C) allocation by water and low-temperature stress for the prediction of annual forest growth with a process-based model. A new C allocation scheme was implemented in the CASTANEA model that accounts for lagged and direct environmental controls of C allocation. Different approaches (static vs dynamic) to modelling C allocation were then compared in a model-data fusion procedure, using satellite-derived leaf production estimates and biometric measurements at c. 104 sites. The modelling of the environmental control of C allocation significantly improved the ability of CASTANEA to predict the spatial and year-to-year variability of aboveground forest growth along regional gradients. A significant effect of the previous year's water stress on the C allocation to leaves and wood was reported. Our results also are consistent with a prominent role of the environmental modulation of sink demand in the wood growth of the studied species. Data available at large scales can inform forest models about the processes driving annual and seasonal C allocation. Our results call for a greater consideration of C allocation drivers, especially sink-demand fluctuations, for the simulations of current and future forest productivity with process-based models.


Assuntos
Carbono/metabolismo , Meio Ambiente , Florestas , Modelos Biológicos , Desenvolvimento Vegetal , Calibragem , Fotossíntese , Folhas de Planta/anatomia & histologia , Folhas de Planta/fisiologia , Estações do Ano , Fatores de Tempo , Madeira/crescimento & desenvolvimento
9.
New Phytol ; 210(2): 459-70, 2016 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-26619197

RESUMO

Although the analysis of flux data has increased our understanding of the interannual variability of carbon inputs into forest ecosystems, we still know little about the determinants of wood growth. Here, we aimed to identify which drivers control the interannual variability of wood growth in a mesic temperate deciduous forest. We analysed a 9-yr time series of carbon fluxes and aboveground wood growth (AWG), reconstructed at a weekly time-scale through the combination of dendrometer and wood density data. Carbon inputs and AWG anomalies appeared to be uncorrelated from the seasonal to interannual scales. More than 90% of the interannual variability of AWG was explained by a combination of the growth intensity during a first 'critical period' of the wood growing season, occurring close to the seasonal maximum, and the timing of the first summer growth halt. Both atmospheric and soil water stress exerted a strong control on the interannual variability of AWG at the study site, despite its mesic conditions, whilst not affecting carbon inputs. Carbon sink activity, not carbon inputs, determined the interannual variations in wood growth at the study site. Our results provide a functional understanding of the dependence of radial growth on precipitation observed in dendrological studies.


Assuntos
Carbono/metabolismo , Florestas , Quercus/crescimento & desenvolvimento , Quercus/metabolismo , Madeira/crescimento & desenvolvimento , Madeira/metabolismo , Biomassa , Desidratação , Estações do Ano
10.
Glob Chang Biol ; 21(1): 363-76, 2015 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-24990223

RESUMO

Understanding the environmental and biotic drivers of respiration at the ecosystem level is a prerequisite to further improve scenarios of the global carbon cycle. In this study we investigated the relevance of physiological phenology, defined as seasonal changes in plant physiological properties, for explaining the temporal dynamics of ecosystem respiration (RECO) in deciduous forests. Previous studies showed that empirical RECO models can be substantially improved by considering the biotic dependency of RECO on the short-term productivity (e.g., daily gross primary production, GPP) in addition to the well-known environmental controls of temperature and water availability. Here, we use a model-data integration approach to investigate the added value of physiological phenology, represented by the first temporal derivative of GPP, or alternatively of the fraction of absorbed photosynthetically active radiation, for modeling RECO at 19 deciduous broadleaved forests in the FLUXNET La Thuile database. The new data-oriented semiempirical model leads to an 8% decrease in root mean square error (RMSE) and a 6% increase in the modeling efficiency (EF) of modeled RECO when compared to a version of the model that does not consider the physiological phenology. The reduction of the model-observation bias occurred mainly at the monthly time scale, and in spring and summer, while a smaller reduction was observed at the annual time scale. The proposed approach did not improve the model performance at several sites, and we identified as potential causes the plant canopy heterogeneity and the use of air temperature as a driver of ecosystem respiration instead of soil temperature. However, in the majority of sites the model-error remained unchanged regardless of the driving temperature. Overall, our results point toward the potential for improving current approaches for modeling RECO in deciduous forests by including the phenological cycle of the canopy.


Assuntos
Atmosfera/química , Ecossistema , Florestas , Modelos Biológicos , Fenômenos Fisiológicos Vegetais , Estações do Ano , Europa (Continente) , América do Norte , Fotossíntese/fisiologia
11.
Ann Bot ; 114(4): 779-93, 2014 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-24769539

RESUMO

BACKGROUND AND AIMS: The structure of a forest stand, i.e. the distribution of tree size features, has strong effects on its functioning. The management of the structure is therefore an important tool in mitigating the impact of predicted changes in climate on forests, especially with respect to drought. Here, a new functional-structural model is presented and is used to assess the effects of management on forest functioning at a national scale. METHODS: The stand process-based model (PBM) CASTANEA was coupled to a stand structure module (SSM) based on empirical tree-to-tree competition rules. The calibration of the SSM was based on a thorough analysis of intersite and interannual variability of competition asymmetry. The coupled CASTANEA-SSM model was evaluated across France using forest inventory data, and used to compare the effect of contrasted silvicultural practices on simulated stand carbon fluxes and growth. KEY RESULTS: The asymmetry of competition varied consistently with stand productivity at both spatial and temporal scales. The modelling of the competition rules enabled efficient prediction of changes in stand structure within the CASTANEA PBM. The coupled model predicted an increase in net primary productivity (NPP) with management intensity, resulting in higher growth. This positive effect of management was found to vary at a national scale across France: the highest increases in NPP were attained in forests facing moderate to high water stress; however, the absolute effect of management on simulated stand growth remained moderate to low because stand thinning involved changes in carbon allocation at the tree scale. CONCLUSIONS: This modelling approach helps to identify the areas where management efforts should be concentrated in order to mitigate near-future drought impact on national forest productivity. Around a quarter of the French temperate oak and beech forests are currently in zones of high vulnerability, where management could thus mitigate the influence of climate change on forest yield.


Assuntos
Carbono/metabolismo , Modelos Biológicos , Árvores/crescimento & desenvolvimento , Biomassa , Mudança Climática , Simulação por Computador , Desidratação , Ecossistema , Fagus/anatomia & histologia , Fagus/crescimento & desenvolvimento , Fagus/fisiologia , Florestas , França , Quercus/anatomia & histologia , Quercus/crescimento & desenvolvimento , Quercus/fisiologia , Árvores/anatomia & histologia , Árvores/fisiologia
12.
Environ Sci Technol ; 48(15): 8744-53, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24955649

RESUMO

Grand challenges in global change research and environmental science raise the need for replicated experiments on ecosystems subjected to controlled changes in multiple environmental factors. We designed and developed the Ecolab as a variable climate and atmosphere simulator for multifactor experimentation on natural or artificial ecosystems. The Ecolab integrates atmosphere conditioning technology optimized for accuracy and reliability. The centerpiece is a highly contained, 13-m(3) chamber to host communities of aquatic and terrestrial species and control climate (temperature, humidity, rainfall, irradiance) and atmosphere conditions (O2 and CO2 concentrations). Temperature in the atmosphere and in the water or soil column can be controlled independently of each other. All climatic and atmospheric variables can be programmed to follow dynamical trajectories and simulate gradual as well as step changes. We demonstrate the Ecolab's capacity to simulate a broad range of atmospheric and climatic conditions, their diurnal and seasonal variations, and to support the growth of a model terrestrial plant in two contrasting climate scenarios. The adaptability of the Ecolab design makes it possible to study interactions between variable climate-atmosphere factors and biotic disturbances. Developed as an open-access, multichamber platform, this equipment is available to the international scientific community for exploring interactions and feedbacks between ecological and climate systems.


Assuntos
Atmosfera , Clima , Sistemas Ecológicos Fechados , Ecologia/instrumentação , Ar Condicionado , Ecossistema , Pesquisa Empírica , Meio Ambiente , Umidade , Quercus/crescimento & desenvolvimento , Reprodutibilidade dos Testes , Ciência , Estações do Ano , Solo , Tecnologia , Temperatura , Água
13.
Sci Total Environ ; 899: 165503, 2023 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-37454861

RESUMO

Studying the forest subsurface is a challenge because of its heterogeneous nature and difficult access. Traditional approaches used by ecologists to characterize the subsurface have a low spatial representativity. This review article illustrates how geophysical techniques can and have been used to get new insights into forest ecology. Near-surface geophysics offers a wide range of methods to characterize the spatial and temporal variability of subsurface properties in a non-destructive and integrative way, each with its own advantages and disadvantages. These techniques can be used alone or combined to take advantage of their complementarity. Our review led us to define three topics how near-surface geophysics can support forest ecology studies: 1) detection of root systems, 2) monitoring of water quantity and dynamics, and 3) characterisation of spatial heterogeneity in subsurface properties at the stand level. The number of forest ecology studies using near-surface geophysics is increasing and this multidisciplinary approach opens new opportunities and perspectives for improving quantitative assessment of biophysical properties and exploring forest response to the environment and adaptation to climate change.


Assuntos
Ecossistema , Florestas , Ecologia/métodos , Mudança Climática
14.
Nat Plants ; 9(7): 1044-1056, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37386149

RESUMO

The benefits of masting (volatile, quasi-synchronous seed production at lagged intervals) include satiation of seed predators, but these benefits come with a cost to mutualist pollen and seed dispersers. If the evolution of masting represents a balance between these benefits and costs, we expect mast avoidance in species that are heavily reliant on mutualist dispersers. These effects play out in the context of variable climate and site fertility among species that vary widely in nutrient demand. Meta-analyses of published data have focused on variation at the population scale, thus omitting periodicity within trees and synchronicity between trees. From raw data on 12 million tree-years worldwide, we quantified three components of masting that have not previously been analysed together: (i) volatility, defined as the frequency-weighted year-to-year variation; (ii) periodicity, representing the lag between high-seed years; and (iii) synchronicity, indicating the tree-to-tree correlation. Results show that mast avoidance (low volatility and low synchronicity) by species dependent on mutualist dispersers explains more variation than any other effect. Nutrient-demanding species have low volatility, and species that are most common on nutrient-rich and warm/wet sites exhibit short periods. The prevalence of masting in cold/dry sites coincides with climatic conditions where dependence on vertebrate dispersers is less common than in the wet tropics. Mutualist dispersers neutralize the benefits of masting for predator satiation, further balancing the effects of climate, site fertility and nutrient demands.


Assuntos
Reprodução , Árvores , Fertilidade , Sementes , Saciação
15.
Sci Total Environ ; 838(Pt 2): 155981, 2022 Sep 10.
Artigo em Inglês | MEDLINE | ID: mdl-35588822

RESUMO

Climate change is imposing drier atmospheric and edaphic conditions on temperate forests. Here, we investigated how deep soil (down to 300 cm) water extraction contributed to the provision of water in the Fontainebleau-Barbeau temperate oak forest over two years, including the 2018 record drought. Deep water provision was key to sustain canopy transpiration during drought, with layers below 150 cm contributing up to 60% of the transpired water in August 2018, despite their very low density of fine roots. We further showed that soil databases used to parameterize ecosystem models largely underestimated the amount of water extractable from the soil by trees, due to a considerable underestimation of the tree rooting depth. The consensus database established for France gave an estimate of 207 mm for the soil water holding capacity (SWHC) at Fontainebleau-Barbeau, when our estimate based on the analysis of soil water content measurements was 1.9 times as high, reaching 390 ± 17 mm. Running the CASTANEA forest model with the database-derived SWHC yielded a 185 gC m-2 y-1 average underestimation of annual gross primary productivity under current climate, reaching up to 687 ± 117 gC m-2 y-1 under climate change scenario RCP8.5. It is likely that the strong underestimation of SWHC that we show at our site is not a special case, and concerns a large number of forest sites. Thus, we argue for a generalisation of deep soil water content measurements in forests, in order to improve the estimation of SWHC and the simulation of the forest carbon cycle in the current context of climate change.


Assuntos
Ecossistema , Solo , Mudança Climática , Secas , Água
16.
Science ; 376(6594): 758-761, 2022 05 13.
Artigo em Inglês | MEDLINE | ID: mdl-35549405

RESUMO

Uncertainties surrounding tree carbon allocation to growth are a major limitation to projections of forest carbon sequestration and response to climate change. The prevalence and extent to which carbon assimilation (source) or cambial activity (sink) mediate wood production are fundamentally important and remain elusive. We quantified source-sink relations across biomes by combining eddy-covariance gross primary production with extensive on-site and regional tree ring observations. We found widespread temporal decoupling between carbon assimilation and tree growth, underpinned by contrasting climatic sensitivities of these two processes. Substantial differences in assimilation-growth decoupling between angiosperms and gymnosperms were determined, as well as stronger decoupling with canopy closure, aridity, and decreasing temperatures. Our results reveal pervasive sink control over tree growth that is likely to be increasingly prominent under global climate change.


Assuntos
Sequestro de Carbono , Florestas , Árvores , Árvores/crescimento & desenvolvimento
17.
Nat Commun ; 13(1): 2381, 2022 05 02.
Artigo em Inglês | MEDLINE | ID: mdl-35501313

RESUMO

The relationships that control seed production in trees are fundamental to understanding the evolution of forest species and their capacity to recover from increasing losses to drought, fire, and harvest. A synthesis of fecundity data from 714 species worldwide allowed us to examine hypotheses that are central to quantifying reproduction, a foundation for assessing fitness in forest trees. Four major findings emerged. First, seed production is not constrained by a strict trade-off between seed size and numbers. Instead, seed numbers vary over ten orders of magnitude, with species that invest in large seeds producing more seeds than expected from the 1:1 trade-off. Second, gymnosperms have lower seed production than angiosperms, potentially due to their extra investments in protective woody cones. Third, nutrient-demanding species, indicated by high foliar phosphorus concentrations, have low seed production. Finally, sensitivity of individual species to soil fertility varies widely, limiting the response of community seed production to fertility gradients. In combination, these findings can inform models of forest response that need to incorporate reproductive potential.


Assuntos
Florestas , Sementes , Fertilidade , Reprodução , Sementes/fisiologia , Árvores
18.
Nat Commun ; 13(1): 28, 2022 01 10.
Artigo em Inglês | MEDLINE | ID: mdl-35013178

RESUMO

Heatwaves exert disproportionately strong and sometimes irreversible impacts on forest ecosystems. These impacts remain poorly understood at the tree and species level and across large spatial scales. Here, we investigate the effects of the record-breaking 2018 European heatwave on tree growth and tree water status using a collection of high-temporal resolution dendrometer data from 21 species across 53 sites. Relative to the two preceding years, annual stem growth was not consistently reduced by the 2018 heatwave but stems experienced twice the temporary shrinkage due to depletion of water reserves. Conifer species were less capable of rehydrating overnight than broadleaves across gradients of soil and atmospheric drought, suggesting less resilience toward transient stress. In particular, Norway spruce and Scots pine experienced extensive stem dehydration. Our high-resolution dendrometer network was suitable to disentangle the effects of a severe heatwave on tree growth and desiccation at large-spatial scales in situ, and provided insights on which species may be more vulnerable to climate extremes.


Assuntos
Mudança Climática , Desidratação , Ecologia , Florestas , Raios Infravermelhos , Clima , Secas , Ecossistema , Noruega , Picea , Pinus sylvestris , Solo , Árvores , Água
19.
Tree Physiol ; 41(7): 1171-1185, 2021 07 05.
Artigo em Inglês | MEDLINE | ID: mdl-33616191

RESUMO

Research on wood phenology has mainly focused on reactivation of the cambium in spring. In this study we investigated if summer drought advances cessation of wood formation and if it has any influence on wood structure in late successional forest trees of the temperate zone. The end of xylogenesis was monitored between August and November in stands of European beech and pedunculate oak in Belgium for two consecutive years, 2017 and 2018, with the latter year having experienced an exceptional summer drought. Wood formation in oak was affected by the drought, with oak trees ceasing cambial activity and wood maturation about 3 weeks earlier in 2018 compared with 2017. Beech ceased wood formation before oak, but its wood phenology did not differ between years. Furthermore, between the 2 years, no significant difference was found in ring width, percentage of mature fibers in the late season, vessel size and density. In 2018, beech did show thinner fiber walls, whereas oak showed thicker walls. In this paper, we showed that summer drought can have an important impact on late season wood phenology xylem development. This will help to better understand forest ecosystems and improve forest models.


Assuntos
Árvores , Madeira , Secas , Ecossistema , Estações do Ano , Xilema
20.
Tree Physiol ; 39(8): 1277-1284, 2019 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-30989235

RESUMO

Leaf senescence (LS) affects tree fitness, species distribution and ecosystem structure and functioning. The drivers of LS and the processes underlying it have been studied, but the studies have mainly focused on environmental cues and have mainly been based on statistical analyses using in situ data sets. Experimental investigation and field verification of the processes and drivers are thus urgently needed. We conducted a nutrient-addition experiment after a spring-warming experiment in which an ~40-day range of leaf-out (LO) dates was induced in horse chestnut (Aesculus hippocastanum) and beech (Fagus sylvatica) saplings. We found that both increased nutrient supply and advanced LO date significantly affected the timing of LS, but their effects were opposite, as the former delayed and the latter advanced the senescence. The effects of nutrient supply and LO interacted species specifically. In chestnut, the delay of senescence caused by fertilization increased with the delay of LO and was thus stronger for individuals that flushed late in the spring. On the contrary, in beech the delay of senescence caused by fertilization decreased with the delay of LO and was insignificant for individuals with the latest LO. The experimental findings for beech were confirmed with mature trees at a regional scale. The interactive effect between nutrients and LO on senescence may be associated with variable sensitivity to photoperiod, growth sink limitation and/or direct effect of foliar nutrition on the timing of senescence. Our novel results show that the interactive effects of LO and nutrient supply on the timing of LS should be further addressed experimentally in forthcoming studies. It would also be interesting to consider our results in the further development of phenological models used in assessing the effects of climatic change. The differences found in the present study between horse chestnut and beech suggest that the results found for one species cannot necessarily be generalized to other species, so studies with different temperate tree species are called for.


Assuntos
Ecossistema , Fagus , Nutrientes , Folhas de Planta , Estações do Ano , Temperatura , Árvores
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA