Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Plant J ; 93(2): 387-398, 2018 01.
Artigo em Inglês | MEDLINE | ID: mdl-29172253

RESUMO

As part of normal development most eukaryotic organisms, ranging from insects and mammals to plants, display variations in nuclear ploidy levels resulting from somatic endopolyploidy. Endoreduplication is the major source of endopolyploidy in higher plants. Endoreduplication is a remarkable characteristic of the fleshy pericarp tissue of developing tomato fruits, where it establishes a highly integrated cellular system that acts as a morphogenetic factor supporting cell growth. However, the functional significance of endoreduplication is not fully understood. Although endoreduplication is thought to increase metabolic activity due to a global increase in transcription, the issue of gene-specific ploidy-regulated transcription remains open. To investigate the influence of endoreduplication on transcription in tomato fruit, we tested the feasibility of a RNA sequencing (RNA-Seq) approach using total nuclear RNA extracted from purified populations of flow cytometry-sorted nuclei based on their DNA content. Here we show that cell-based approaches to the study of RNA-Seq profiles need to take into account the putative global shift in expression between samples for correct analysis and interpretation of the data. From ploidy-specific expression profiles we found that the activity of cells inside the pericarp is related both to the ploidy level and their tissue location.


Assuntos
Endorreduplicação , Perfilação da Expressão Gênica/métodos , Solanum lycopersicum/genética , Núcleo Celular/genética , DNA de Plantas/genética , Frutas/genética , Frutas/crescimento & desenvolvimento , Solanum lycopersicum/crescimento & desenvolvimento , Ploidias , RNA de Plantas/genética , Análise de Sequência de RNA
2.
J Exp Bot ; 68(7): 1613-1623, 2017 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-28369617

RESUMO

In angiosperms, the ovary wall resumes growth after pollination through a balanced combination of cell division and cell expansion. The quantitative pattern of these events remains poorly known in fleshy fruits such as tomato (Solanum spp.), in which dramatic growth of the pericarp occurs together with endoreduplication. Here, this pattern is reported at the level of each of the cell layers or groups of cell layers composing the pericarp, except for vascular bundles. Overall, cell division and cell expansion occurred at similar rates for 9 days post anthesis (DPA), with very specific patterns according to the layers. Subsequently, only cell expansion continued for up to 3-4 more weeks. New cell layers in the pericarp originated from periclinal cell divisions in the two sub-epidermal cell layers. The shortest doubling times for cell number and for cell volume were both detected early, at 4 DPA, in epicarp and mesocarp respectively, and were both found to be close to 14 h. Endoreduplication started before anthesis in pericarp and was stimulated at fruit set. It is proposed that cell division, endoreduplication, and cell expansion are triggered simultaneously in specific cell layers by the same signals issuing from pollination and fertilization, which contribute to the fastest relative fruit growth early after fruit set.


Assuntos
Divisão Celular , Crescimento Celular , Frutas/crescimento & desenvolvimento , Solanum lycopersicum/crescimento & desenvolvimento
3.
J Exp Bot ; 66(4): 1075-86, 2015 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-25573859

RESUMO

Tomato (Solanum lycopersicum Mill.) represents a model species for all fleshy fruits due to its biological cycle and the availability of numerous genetic and molecular resources. Its importance in human nutrition has made it one of the most valuable worldwide commodities. Tomato fruit size results from the combination of cell number and cell size, which are determined by both cell division and expansion. As fruit growth is mainly driven by cell expansion, cells from the (fleshy) pericarp tissue become highly polyploid according to the endoreduplication process, reaching a DNA content rarely encountered in other plant species (between 2C and 512C). Both cell division and cell expansion are under the control of complex interactions between hormone signalling and carbon partitioning, which establish crucial determinants of the quality of ripe fruit, such as the final size, weight, and shape, and organoleptic and nutritional traits. This review describes the genes known to contribute to fruit growth in tomato.


Assuntos
Frutas/genética , Regulação da Expressão Gênica de Plantas/genética , Solanum lycopersicum/genética , Ciclo Celular , Divisão Celular , Proliferação de Células , Tamanho Celular , Endorreduplicação , Frutas/crescimento & desenvolvimento , Regulação da Expressão Gênica no Desenvolvimento/genética , Solanum lycopersicum/crescimento & desenvolvimento , Poliploidia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA