RESUMO
Ferroptosis, characterized by lipid accumulation in intracellular compartments, is related to acute kidney injury (AKI), but the mechanism remains obscure. In our previous study, the protective effect of augmenter of liver regeneration (ALR) on AKI was not fully clarified. In this study, we established an AKI mouse model by knocking out proximal tubule-specific ALR and an AKI cell model by inducing hypoxia, as well as enrolled AKI patients, to investigate the effects of ALR on ferroptosis and the progression of AKI. We found that ALR knockout aggravated ferroptosis and increased ROS accumulation and mitochondrial damage, whereas ALR overexpression attenuated ferroptosis through clearance of ROS and maintenance of mitochondrial morphology. Mechanistically, we demonstrated that ALR could directly bind to long-chain-fatty-acid-CoA ligase 4 (ACSL4) and further inhibit the expression of ACSL4 by interacting with certain regions. By resolution liquid chromatography coupled with triple quadruple mass spectrometry, we found that ALR could reduce the contents of polyunsaturated fatty acids, especially arachidonic acid. In addition, we showed that ALR binds to ACSL4 and attenuates oxylipin accumulation, exerting a protective effect against ferroptosis in AKI. Therefore, targeting renal ALR can attenuate ferroptosis and can offer a promising strategy for the treatment of AKI.
Assuntos
Injúria Renal Aguda , Ferroptose , Animais , Humanos , Camundongos , Injúria Renal Aguda/metabolismo , Apoptose , Ligases , Regeneração Hepática , Espécies Reativas de Oxigênio/metabolismoRESUMO
Fiber crossbars, an emerging electronic device, have become the most promising basic unit for advanced smart textiles. The demand for highly sensitive fiber crossbar sensors (FCSs) in wearable electronics is increased. However, the unique structure of FCSs presents challenges in replicating existing sensitivity enhancement strategies. Aiming at the sensitivity of fiber crossbar sensors, a second-order synergistic strategy is proposed that combines air capacitance and equipotential bodies, resulting in a remarkable sensitivity enhancement of over 20 times for FCSs. This strategy offers a promising avenue for the design and fabrication of FCSs that do not depend on intricate microstructures. Furthermore, the integrative structure of core-sheath fibers ensures a robust interface, leading to a low hysteresis of only 2.33% and exceptional stability. The outstanding capacitive response performance of FCSs allows them to effectively capture weak signals such as pulses and sounds. This capability opens up possibilities for the application of FCSs in personalized health management, as demonstrated by wireless monitoring systems based on pulse signals.
RESUMO
BACKGROUND: Glioblastoma (GBM) is the most aggressive malignant central nervous system tumor with a poor prognosis.The malignant transformation of glioma cells via epithelial-mesenchymal transition (EMT) has been observed as a main obstacle for glioblastoma treatment. Epithelial membrane protein 3 (EMP3) is significantly associated with the malignancy of GBM and the prognosis of patients. Therefore, exploring the possible mechanisms by which EMP3 promotes the growth of GBM has important implications for the treatment of GBM. METHODS: We performed enrichment and correlation analysis in 5 single-cell RNA sequencing datasets. Differential expression of EMP3 in gliomas, Kaplan-Meier survival curves, diagnostic accuracy and prognostic prediction were analyzed by bioinformatics in the China Glioma Genome Atlas (CGGA) database and The Cancer Genome Atlas (TCGA) database. EMP3-silenced U87 and U251 cell lines were obtained by transient transfection with siRNA. The effect of EMP3 on glioblastoma proliferation was examined using the CCK-8 assay. Transwell migration assay and wound healing assay were used to assess the effect of EMP3 on glioblastoma migration. Finally, quantitative real-time polymerase chain reaction (qRT-PCR) and western blot were used to detect the mRNA and protein expression levels of EMT-related transcription factors and mesenchymal markers. RESULTS: EMP3 is a EMT associated gene in multiple types of malignant cancer and in high-grade glioblastoma. EMP3 is enriched in high-grade gliomas and isocitrate dehydrogenase (IDH) wild-type gliomas.EMP3 can be used as a specific biomarker for diagnosing glioma patients. It is also an independent prognostic factor for glioma patients' overall survival (OS). In addition, silencing EMP3 reduces the proliferation and migration of glioblastoma cells. Mechanistically, EMP3 enhances the malignant potential of tumor cells by promoting EMT. CONCLUSION: EMP3 promotes the proliferation and migration of GBM cells, and the mechanism may be related to EMP3 promoting the EMT process in GBM; EMP3 may be an independent prognostic factor in GBM.
Assuntos
Neoplasias Encefálicas , Glioblastoma , Glioma , Humanos , Glioblastoma/patologia , Prognóstico , Neoplasias Encefálicas/patologia , Glioma/patologia , Transição Epitelial-Mesenquimal/genética , Glicoproteínas de Membrana/genética , Glicoproteínas de Membrana/metabolismoRESUMO
BACKGROUND: Blood stasis constitution in traditional Chinese medicine (TCM) is believed to render individuals more susceptible to metabolic diseases. However, the biological underpinnings of this constitutional imbalance remain unclear. METHODS: This study explored the association between blood stasis constitution, serum metabolic markers including uric acid (UA), high-density lipoprotein cholesterol (HDLC), their ratio (UHR), serum metabolites, and gut microbiota. Clinical data, fecal and serum samples were acquired from 24 individuals with a blood stasis constitution and 80 individuals with a balanced constitution among healthy individuals from Guangdong. Gut microbiota composition analysis and serum metabolomics analysis were performed. RESULTS: Females with a blood stasis constitution had higher UA levels, lower HDLC levels, and higher UHR in serum, suggesting a higher risk of metabolic abnormalities. Analysis of the gut microbiome revealed two distinct enterotypes dominated by Bacteroides or Prevotella. Intriguingly, blood stasis subjects were disproportionately clustered within the Bacteroides-rich enterotype. Metabolomic analysis identified subtle differences between the groups, including lower phenylalanine and higher trimethylaminoacetone levels in the blood stasis. Several differential metabolites displayed correlations with HDLC, UA, or UHR, unveiling potential new markers of metabolic dysregulation. CONCLUSIONS: These findings elucidate the intricate interplay between host constitution, gut microbiota, and serum metabolites. The concept of blood stasis offers a unique perspective to identify subtle alterations in microbiome composition and metabolic pathways, potentially signaling underlying metabolic vulnerability, even in the presence of ostensibly healthy profiles. Continued investigation of this TCM principle may reveal critical insights into the early biological processes that foreshadow metabolic deterioration.
Assuntos
Medicina Tradicional Chinesa , Ácido Úrico , Humanos , Feminino , HDL-Colesterol , Fezes , Metabolômica , BiomarcadoresRESUMO
BACKGROUND: Chronic kidney disease (CKD), often coexisting with various systemic disorders, may increase the risk of falls. Our study aimed to assess the prevalence and risk of falls among patients with CKD in China. METHODS: We included patients with/without CKD from China Health and Retirement Longitudinal Study (CHARLS). Our primary outcome was the occurrence of fall accidents within the past 2 years. To enhance the robustness of our findings, we employed a multivariable logistic regression model, conducted propensity score analysis, and applied an inverse probability-weighting model. RESULTS: A total of 12,658 participants were included, the prevalence of fall accident rates were 17.1% (2,028/11,837) among participants without CKD and 24.7% (203/821) among those with CKD. In the inverse probability-weighting model, participants with CKD exhibited higher fall accident rates (OR = 1.28, 95% CI: 1.08-1.53, p = 0.005 ). Sensitivity and subgroup analysis showed the results still stable. CONCLUSIONS: The population in China afflicted with CKD has a significantly heightened risk of experiencing falls, underscoring the crucial importance of intensifying efforts in assessing and preventing fall risks.
Assuntos
Insuficiência Renal Crônica , Aposentadoria , Humanos , Estudos Longitudinais , Acidentes por Quedas , Insuficiência Renal Crônica/epidemiologia , China/epidemiologiaRESUMO
BACKGROUND: Late-ripening citrus plays an important role in the stability of the global citrus industry. However, the regreening phenomenon in Valencia oranges impacts the peel color and commercial value. Ethylene degreening is an effective technique to improve the color of citrus fruits, but this effect may be delayed in regreened oranges. To better clarify this phenomenon, plastid morphology, pigment and phytohormone content in ethephon-degreened Midknight Valencia oranges harvested in different stages were evaluated. RESULTS: Results showed that in fruits harvested at the turning stage, ethephon degreening treatment induced a chloroplast-to-chromoplast transition, and chlorophyll degradation and carotenoid accumulation were accelerated. Conversely, in fruits harvested at the regreening stage, the changes in plastid morphology were minimal, with delayed changes in chlorophyll and carotenoids. Genes related to ethylene biosynthesis and signaling pathways supported these responses. Variations in endogenous auxin, jasmonic acid, abscisic acid and gibberellins could partially explain this phenomenon. CONCLUSION: The response of Midknight Valencia oranges to ethephon degreening was delayed in the regreening stage, possibly due to the dynamic variations in endogenous phytohormones. © 2024 Society of Chemical Industry.
RESUMO
BACKGROUND: To provide useful insights into measles elimination progress in China, measles surveillance data were reviewed, and the transmission patterns of measles viruses circulating in China during 1993-2021 were analyzed. METHODS: Measles incidence data from the National Notifiable Disease Reporting System of the China Center for Disease Control and Prevention were analyzed. A total of 17 570 strains were obtained from 30 of 31 provinces in mainland China during 1993-2021. The recommended genotyping window was amplified. Genotyping analysis was conducted for comparison with the reference strains. Phylogenetic analyses were performed to identify genetic relationships among different lineages within the genotypes. RESULTS: With high coverage of routine immunization and intensive supplementary immunization activities, measles incidence has shown a downward trend since 1993, despite 2 resurgences, reaching a historic low level in 2020-2021 (average 0.5 per million). During 1993-2021, 9 genotypes including domestic genotype H1; imported genotypes B3, D4, D8, D9, D11, G3, and H2; and vaccine-associated genotype A were identified. Among them, the genotype H1 strain circulated endemically in China for more than 25 years; the last strain was detected in Yunnan Province in September 2019. Multiple imported genotypes have been identified since 2009 showing different transmission patterns. Since April 2020, no imported strains have been detected, while vaccine-associated genotype A continues to be detected. CONCLUSIONS: The evidence of low incidence during 2020-2021 and virological surveillance data in this study confirm that China is currently approaching measles elimination.
Assuntos
Vírus do Sarampo , Sarampo , Humanos , Vírus do Sarampo/genética , Genótipo , Filogenia , China/epidemiologia , Sarampo/epidemiologia , Sarampo/prevenção & controleRESUMO
Plum is an important stone fruit in China, but the fruit is easily perishable and susceptible to infection by pathogens. Traditionally, synthetic fungicides are used to control diseases. However, the side effects of fungicides should not be ignored. Cysteine, generally recognized as safe (GRAS) amino acid, has been reported to play roles in the plant abiotic stress response, but little is known about the role of cysteine to control postharvest diseases in fruits. Therefore, this study was designed to investigate the effect of L-cysteine treatment on control of postharvest brown rot in artificially inoculated plum fruits and the possible biocontrol mechanisms involved. Postharvest plum fruits were inoculated with 1, 10, 100 and 1000 mg L-1 L-cysteine. 100 mg L-1 L-cysteine treatment effectively controlled brown rot in artificially inoculated plum fruits by inducing resistance. Furthermore, 100 mg L-1 L-cysteine treatment increased the activities of glucose-6-phosphate dehydrogenase (G6PDH) and 6-phosphogluconate dehydrogenase (6PGDH), enhanced the content of NADPH of the pentose phosphate pathway, as well as improved the contents of H2O2 and some amino acids in the artificially inoculated plum fruits. 100 mg L-1 L-cysteine treatment also elevated the antioxidant content (AsA, GSH) and the antioxidant enzymes activities (APX, GR, MDAR, DHAR) of the ascorbate-glutathione (AsA-GSH) pathway. The protective effects of L-cysteine treatment on postharvest plum fruits likely be due to activating some defense-related responses of the fruit against infection. L-cysteine treatment is a safe promising method for controlling postharvest brown rot in plum fruits.
Assuntos
Fungicidas Industriais , Prunus domestica , Frutas , Cisteína/farmacologia , Fungicidas Industriais/farmacologia , Antioxidantes/farmacologia , Resistência à Doença , Peróxido de Hidrogênio/farmacologiaRESUMO
Pinus massoniana Lamb. is a crucial timber and resin conifer in China, but its plantation industry is threatened by outbreaks of pine wilt disease (PWD) caused by Bursaphelenchus xylophilus (pinewood nematode; PWN). However, as of yet, there is no comprehensive analysis of NBS-LRR genes in P. massoniana involved in its defense against PWN. In this study, 507 NBS genes were identified in the transcriptome of resistant and susceptible P. masoniana inoculated with the PWN. The phylogenetic analysis and expression profiles of resistant and susceptible P. massoniana revealed that the up-regulated PmNBS-LRR97 gene was involved in conferring resistance to PWN. The results of real-time quantitative PCR (qRT-PCR) showed that PmNBS-LRR97 was significantly up-regulated after PWN infection, especially in the stems. Subcellular localization indicated that PmNBS-LRR97 located to the cell membrane. PmNBS-LRR97 significantly activated the expression of reactive oxygen species (ROS)-related genes in P. massoniana. In addition, the overexpression of PmNBS-LRR97 was capable of promoting the production of ROS, aiding in plant growth and development. In summary, PmNBS-LRR97 participates in the defense response to PWN and plays an active role in conferring resistance in P. massoniana. This finding provides new insight into the regulatory mechanism of the R gene in P. massoniana.
Assuntos
Pinus , Tylenchida , Animais , Espécies Reativas de Oxigênio , Xylophilus , Pinus/genética , Filogenia , Transcriptoma , Doenças das Plantas/genética , Tylenchida/genéticaRESUMO
A D-A type of luminophore, TPA-CDP, was designed and synthesized by using triphenylamine (TPA) as D (electron donor), 1,3-diaryl pyrazole with cyano groups (CDP) as A (electron acceptor) and employing a cyanovinyl segment as a recognition group. Firstly, TPA-CDP demonstrates effective fluorescence quenching as a sensor for I- by the nucleophilic addition reaction of the cyanovinyl segment with a high level of sensitivity, selectivity and a low determination limit of 4.43 µM. Interestingly, TPA-CDP exhibited an AIE phenomenon with the fw value reaching 50%. In addition, TPA-CDP displayed distinct mechanochromic fluorescence behavior with 70 nm red shift, which was observed over four repeated cycles. Furthermore, the mechanochromic fluorescence behavior of TPA-CDP, as observed in powder XRD experiments, was found to be associated with the morphological transition from a crystalline state to an amorphous state. These results confirm the significant potential of CDP as a powerful electron-deficient component in the creation of D-A-type mechanochromic fluorescence materials and biosensors for detecting I-.
RESUMO
To investigate the relationship between small non-coding RNA-204-3p (miR-204-3p) and the onset and wound healing of diabetic foot ulcers (DFU) and the underlying molecular mechanism, sixty four newly diagnosed patients with T2DM without DFU (T2DM group), 82 T2DM patients with DFU (DFU group), and 60 controls with normal glucose tolerance (NC group) were included. Quantitative real-time PCR (qRT-PCR) method was used to determine miR-204-3p expression levels in peripheral blood and wound margin tissue of subjects, and to analyse the relationship between the expression of miR-204-3p and wound healing. In vitro experiments were also performed to understand the effect of miR-204-3p on high glucose induced injury of HaCaT cells (human keratinocytes). The results showed that miR-204-3p expression level of peripheral blood in the T2DM group was marked lower than that in the NC group [2.38 (1.31-5.04) vs 3.27 (1.51-6.98)] (P < .05). Similarly, the miR-204-3p expression level of peripheral blood in the DFU group was significantly lower than the T2DM group [1.15 (0.78-2.89) vs 2.38 (1.31-5.04)] (P < .01). The expression level of miR-204-3p in peripheral blood and wound margin tissues of DFU patients was positively correlated with the healing rate of foot ulcers after 8 weeks (P < .05). Multifactorial logistic regression analysis showed that decreased expression of miR-204-3p in peripheral blood was an independent risk factor for DFU (OR = 2.95, P < .05). The results of in vitro experiments showed that miR-204-3p could improve the proliferation and migration of HKC cells and reduce the proportion of apoptosis of HKC cells by targeted regulation of zinc finger protein Kruppel like factor 6 (KLF6) in high glucose environment. Therefore, the decreased expression of miR-204-3p in peripheral blood and wound tissue of T2DM patients is closely related to the occurrence and poor wound healing of DFU. The down-regulated expression of miR-204-3p can reduce its ability to antagonise the functional damage of keratinocytes induced by high-glucose conditions. These results will provide potential targets for the treatment of DFU.
Assuntos
Diabetes Mellitus Tipo 2 , Pé Diabético , MicroRNAs , Humanos , Pé Diabético/genética , Pé Diabético/epidemiologia , Cicatrização/genética , Fatores de Risco , MicroRNAs/genéticaRESUMO
Highly selective photoreduction of CO2 to valuable hydrocarbons is of great importance to achieving a carbon-neutral society. Precisely manipulating the formation of the Metal1 â â â C=Oâ â â Metal2 (M1 â â â C=Oâ â â M2 ) intermediate on the photocatalyst interface is the most critical step for regulating selectivity, while still a significant challenge. Herein, inspired by the polar electronic structure feature of CO2 molecule, we propose a strategy whereby the Lewis acid-base dual sites confined in a bimetallic catalyst surface are conducive to forming a M1 â â â C=Oâ â â M2 intermediate precisely, which can promote selectivity to hydrocarbon formation. Employing the Ag2 Cu2 O3 nanowires with abundant Cuâ â â Ag Lewis acid-base dual sites on the preferred exposed {110} surface as a model catalyst, 100 % selectivity toward photoreduction of CO2 into CH4 has been achieved. Subsequent surface-quenching experiments and density functional theory (DFT) calculations verify that the Cuâ â â Ag Lewis acid-base dual sites do play a vital role in regulating the M1 â â â C=Oâ â â M2 intermediate formation that is considered to be prone to convert CO2 into hydrocarbons. This study reports a highly selective CO2 photocatalyst, which was designed on the basis of a newly proposed theory for precise regulation of reaction intermediates. Our findings will stimulate further research on dual-site catalyst design for CO2 reduction to hydrocarbons.
RESUMO
BACKGROUND: Heteroplexis Chang is an endangered genus endemic to China with important ecological and medicinal value. However, due to the lack of genetic data, our conservation strategies have repeatedly been delayed by controversial phylogenetic (molecular) relationships within the genera. In this study, we reported three new Heteroplexis chloroplast (cp.) genomes (H. vernonioides, H. impressinervia and H. microcephala) to clarify phylogenetic relationships between species allocated in this genus and other related Compositae. RESULTS: All three new cp. genomes were highly conserved, showing the classic four regions. Size ranged from 152,984 - 153,221 bp and contained 130 genes (85 protein-coding genes, 37 tRNA, eight rRNA) and two pseudogenes. By comparative genomic and phylogenetic analyses, we found a large-scale inversion of the entire large single-copy (LSC) region in H. vernonioides, H. impressinervia and H. microcephala, being experimentally verified by PCR. The inverted repeat (IR) regions showed high similarity within the five Heteroplexis plastomes, showing small-size contractions. Phylogenetic analyses did not support the monophyly of Heteroplexis genus, whereas clustered the five species within two differentiated clades within Aster genus. These phylogenetic analyses suggested that the five Heteroplexis species might be subsumed into the Aster genus. CONCLUSION: Our results enrich the data on the cp. genomes of the genus Heteroplexis, providing valuable genetic resources for future studies on the taxonomy, phylogeny, and evolution of Aster genus.
Assuntos
Asteraceae , Genoma de Cloroplastos , Filogenia , Genoma de Cloroplastos/genética , Genômica , RNA RibossômicoRESUMO
BACKGROUND: Hepatocellular carcinoma (HCC) is a highly refractory cancer associated with increasing mortality, which currently lacks effective treatment options. Interleukin-24 (IL-24) is a novel tumor suppressor cytokine that can selectively induce cancer cell apoptosis, and it has been utilized as a cancer gene therapy strategy. The vaccinia virus is a promising strategy for cancer therapy, owing to its direct viral lytic effects, as well as a vehicle to overexpress therapeutic transgenes. METHODS: We constructed a recombinant oncolytic vaccinia viruse (VG9-IL-24) based on vaccinia virus Guang9 (VG9) harboring the IL-24 gene. In vitro, we assessed the replication of VG9-IL-24 in HCC cell lines and normal liver cells and evaluated the cytotoxicity in different cell lines; then, we determined the expression of IL-24 by RT-PCR and ELISA. We examined apoptosis and cell cycle progression in SMMC-7721 cells treated with VG9-IL-24 by flow cytometry. In vivo, we established the SMMC-7721 xenograft mouse model to evaluate the antitumor effects of VG9-IL-24. RESULTS: In vitro, VG9-IL-24 efficiently infected HCC cell lines, but not normal liver cells, and resulted in a high level of IL-24 expression and significant cytotoxicity. Moreover, VG9-IL-24 induced an increase in the proportion of apoptotic cells and blocked the SMMC-7721 cell cycle in the G2/M phase. In vivo, tumor growth was significantly suppressed and the survival was prolonged in VG9-IL-24-treated mice. CONCLUSIONS: Vaccinia virus VG9-mediated gene therapy might be an innovative treatment for cancer with tumor-specific lysis and apoptosis-inducing effects. VG9-IL-24 exhibited enhanced antitumor effects and is a promising candidate for HCC therapy.
Assuntos
Carcinoma Hepatocelular , Neoplasias Hepáticas , Terapia Viral Oncolítica , Vírus Oncolíticos , Animais , Apoptose , Carcinoma Hepatocelular/terapia , Linhagem Celular Tumoral , Humanos , Interleucinas , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/terapia , Camundongos , Terapia Viral Oncolítica/métodos , Vírus Oncolíticos/genética , Vaccinia virus/genéticaRESUMO
BACKGROUND The recurrence of COVID-19 and the continuous escalation of prevention and control policies can lead to an increase in mental health problems. This study aimed to investigate the perceived stress, coping style, resilience, and social support among patients on maintenance hemodialysis (MHD) during the COVID-19 epidemic lockdown in China. MATERIAL AND METHODS This cross-sectional observational study enrolled 197 patients on MHD from the Guangdong Province Traditional Chinese Medical Hospital and the Hedong Hospital of Guangzhou Liwan District People's Hospital during July 2021. AMOS 24.0 and PROCESS Macro 3.1 model 6 were used for analyses of moderating mediating effects. RESULTS Perceived stress was negatively correlated with positive coping style (r=-0.305, P<0.001) and resilience (r=-0.258, P<0.001), whereas resilience (r=0.631, P<0.001) and social support (r=0.300, P<0.001) were positively correlated with positive coping style among patients on MHD. In the moderated mediating model, perceived stress had significant direct predictive effects on positive coping style (95% CI -0.33, -0.07), and perceived stress had significant indirect predictive effects on positive coping styles through resilience (95% CI -0.26, -0.06) or social support (95% CI 0.01, 0.06). Perceived stress had significant indirect predictive effects on positive coping style through both resilience and social support (95% CI -0.04, -0.01). CONCLUSIONS Perceived stress not only predicted coping style directly, but also indirectly predicted coping style through resilience and social support. Coping style was affected by internal and external factors during the COVID-19 pandemic lockdown period.
Assuntos
Adaptação Psicológica/fisiologia , COVID-19/psicologia , Nefropatias/psicologia , Adulto , Povo Asiático/psicologia , COVID-19/complicações , China/epidemiologia , Controle de Doenças Transmissíveis , Estudos Transversais , Feminino , Humanos , Nefropatias/complicações , Nefropatias/virologia , Masculino , Pessoa de Meia-Idade , Pandemias , Diálise Renal , Resiliência Psicológica/fisiologia , SARS-CoV-2/patogenicidade , Apoio Social , Estresse Psicológico/psicologia , Inquéritos e QuestionáriosRESUMO
This study investigated the effect of arginine (Arg) on the antagonistic activity of Metschnikowia citriensis against sour rot caused by Geotrichum citri-aurantii in postharvest citrus, and evaluated the possible mechanism therein. Arg treatment up-regulated the PUL genes expression, and significantly induced the pulcherriminic acid (PA) production of M. citriensis, which related to the capability of iron depletion of M. citriensis. By comparing the biocontrol effects of Arg-treated and untreated yeast cells, it was found that Arg treatment significantly enhanced the biocontrol efficacy of M. citriensis, and 5 mmol L-1 Arg exerted the best effect. Additionally, the biofilm formation ability of M. citriensis was greatly enhanced by Arg, and the higher population density of yeast cells in citrus wounds was also observed in Arg treatment groups stored both at 25 °C and 4 °C. Moreover, Arg was shown to function as a cell protectant to elevate antioxidant enzyme activity [including catalase (CAT), superoxide dismutase (SOD) and glutathione peroxidase (GPX)] and intracellular trehalose content to resist oxidative stress damage, that directly helped to enhance colonization ability of yeasts in fruit wounds. These results suggest the application of Arg is a useful approach to improve the biocontrol performance of M. citriensis.
Assuntos
Agentes de Controle Biológico , Citrus , Geotrichum/patogenicidade , Metschnikowia/fisiologia , Doenças das Plantas/prevenção & controle , Arginina , Frutas/microbiologia , Doenças das Plantas/microbiologiaRESUMO
The public health harms caused by fine particulate matter (PM2.5) have become a global focus, with PM2.5 exposure recognized as a critical risk factor for global morbidity and mortality. Chronic inflammation is the common pathophysiological feature of respiratory diseases induced by PM2.5 and is the most critical cause of all these diseases. However, presently there is a lack of effective preventive and therapeutic approaches for inflammatory lung injuries caused by PM2.5 exposure. Baicalin is a herb-derived effective flavonoid compound with multiple health benefits. This study established a murine lung inflammatory injury model via inhalation of PM2.5 aerosols. The data showed that after baicalin intervention, lung injury pathological score of baicalin (4.16 ± 0.54, 3.33 ± 0.76, 4.00 ± 0.45) and claricid (3.00 ± 0.78) treatments were markedly lower than PM2.5-treated mice (6.17 ± 0.31), and pathological damage was alleviated. Compared to the PM2.5 group, the spleen and lung indexes in the baicalin and claricid groups were significantly reduced. The inflammatory cytokines of TNF-α, IL-18, and IL-1ß in serum, alveolar lavage fluid, and lung tissue were significantly decreased in the baicalin and claricid groups. The expressions of inflammatory pathway-related genes and proteins HMGB1, NLRP3, ASC, and caspase-1 were up-regulated in the PM2.5 group. The expressions of these genes and proteins were significantly decreased following baicalin treatment. The lung function indicators showed that the MV (65.94 ± 8.19 mL), sRaw (1.79 ± 0.08 cm H2O.s), and FRC (0.52 ± 0.01 mL) in the PM2.5 group were higher than in the control and baicalin groups, and respiratory function was improved by baicalin. PM2.5 exposure markedly altered the bacterial composition at the genus level. The dominant flora relative abundances of uncultured_bacterium_f_Muribaculaceae, Streptococcus, and Lactobacillus, were decreased from the control group (9.20%, 8.53%, 6.21%) to PM2.5 group (6.26%, 5.49%, 4.77%), respectively. Following baicalin intervention, the relative abundances were 9.72%, 6.65%, and 3.57%, respectively. Therefore, baicalin could potentially prevent and improve mice lung inflammatory injury induced by PM2.5 exposure. Baicalin might provide a protective role by balancing oropharyngeal microbiota and affecting the expression of the HMGB1/Caspase1 pathway.
Assuntos
Proteína HMGB1 , Lesão Pulmonar , Camundongos , Animais , Lesão Pulmonar/induzido quimicamente , Lesão Pulmonar/tratamento farmacológico , Camundongos Endogâmicos , Flavonoides/farmacologia , Flavonoides/uso terapêutico , PulmãoRESUMO
BACKGROUND: The paper is aimed at uncovering the mechanism of miR-204-5p in regulating inflammatory responses of human osteoarthritic synovial fibroblasts (SFs). METHODS: IL-1ß-induced osteoarthritic SFs were established as an osteoarthritis (OA) cell model. The osteoarthritic SFs were accordingly transfected with mimics-miR-204-5p, inhibitors-miR-204-5 or FOXC1 siRNA. MTT tested the vitality of osteoarthritic SFs by analyzing the cell optical density. The expressions of miR-204-5p, FOXC1, TNF-α, IL-6, PGE2, MMP-1, MMP-13 and COX-2 in osteoarthritic SFs were measured by qRT-PCR, Western blotting and/or ELISA. The binding of miR-204-5p to FOXC1 was verified through luciferase reporter assay. The regulatory effect of miR-204-5p on FOXC1 was also tested in normal SFs. RESULTS: miR-204-5p was under-expressed and FOXC1 was over-expressed in osteoarthritic SFs. The expressions of FOXC1, TNF-α, IL-6, PGE2, MMP-1, MMP-13 and COX-2 were up-regulated in IL-1ß-treated SFs. Up-regulation of miR-204-5p or down-regulation of FOXC1 suppressed the inflammatory responses of osteoarthritic SFs. miR-204-5p negatively regulated FOXC1 by being a sponge in osteoarthritic SFs as well as in normal SFs. CONCLUSION: miR-204-5p down-regulates FOXC1 to ameliorate inflammation of SFs in OA.
Assuntos
MicroRNAs , Osteoartrite , Condrócitos/metabolismo , Ciclo-Oxigenase 2/genética , Ciclo-Oxigenase 2/metabolismo , Dinoprostona/metabolismo , Fibroblastos/metabolismo , Fatores de Transcrição Forkhead/genética , Humanos , Inflamação/genética , Inflamação/metabolismo , Interleucina-1beta/metabolismo , Interleucina-1beta/farmacologia , Interleucina-6 , Metaloproteinase 1 da Matriz/metabolismo , Metaloproteinase 1 da Matriz/farmacologia , Metaloproteinase 13 da Matriz/genética , Metaloproteinase 13 da Matriz/metabolismo , Metaloproteinase 13 da Matriz/farmacologia , MicroRNAs/genética , MicroRNAs/metabolismo , Osteoartrite/genética , Fator de Necrose Tumoral alfa/metabolismo , Fator de Necrose Tumoral alfa/farmacologiaRESUMO
BACKGROUND: Peel color regulated by pigment metabolism is one of the most crucial indicators affecting the commodity values of citrus fruit. Storage temperature is a vital environmental factor that regulates the fruit pigmentation. RESULTS: Results showed that the peel coloring process was significantly inhibited when mandarin fruit were stored at 5 and 32 °C with normal coloring at 25 °C as the control. However, the inhibitive mechanisms of 5 and 32 °C storage were different. At 5 °C, higher levels of CcNYC and CcCHL2 were detected, which indicated that 5 °C induces the circulation of chlorophyll rather than inhibits chlorophyll degradation. CcPSY2, CcCHYB, and CcZEP exhibited higher expression levels in fruit stored at 5 °C, which accelerated the accumulation of carotenoids. In fruit stored at 32 °C, CcNYC, CcPAO, and CcCHL2 exhibited lower expression levels than those fruit stored at 5 °C, and the expressions of CcPSY2, CcCHYB, and CcZEP were down regulated, implying the carotenoid synthesis was suppressed. CONCLUSION: Storage at 5 °C inhibited the postharvest coloring of mandarin fruit mainly by activating the cycle of chlorophyll, although it promotes the accumulation of carotenoids at the same time, but chlorophyll covers the color of carotenoids. Storage at 32 °C inhibited mandarin fruit coloring mainly by inhibiting the degradation of chlorophyll. Compared with the change of individual chlorophyll or carotenoid content, the change of the ratio of chlorophyll and carotenoid had a more important role in the coloration of mandarin fruit. This research offers valuable details for understanding the effect of temperature on the coloring process of postharvest citrus fruit. © 2022 Society of Chemical Industry.
Assuntos
Citrus , Citrus/química , Frutas/química , Temperatura , Carotenoides/análise , Clorofila/metabolismo , Regulação da Expressão Gênica de PlantasRESUMO
BACKGROUND: To provide a better understanding of the progress on rubella control and elimination in China, a genetic analysis was conducted to examine the transmission pattern of the endemic rubella virus in China during 2010-2019. METHODS: A total of 4895 strains were obtained from 29 of the 31 provinces in mainland China during 2010-2019. The genotyping regions of the strains were amplified, determined, and assembled. Genotyping analysis and lineage division were performed by comparisons with the World Health Organization reference strains and reported lineage reference strains, respectively. Further phylogenetic analyses were performed to compare the genetic relationship. RESULTS: During 2010-2019, the domestic lineage 1E-L1 and multiple imported lineages of rubella viruses including 2B-L1, 1E-L2, and 2B-L2c were identified. Further analysis of the circulation trend of the different lineages indicated that 2 switches occurred among the lineages. The first shift was from lineage 1E-L1 to 2B-L1, which occurred around 2015-2016, followed by the lowest rubella incidence in 2017. The second shift was from lineage 2B-L1 to 1E-L2 and 2B-L2c, which occurred around 2018-2019, coinciding with rubella resurgence and the subsequent nationwide epidemic during 2018-2019. Insufficient genomic information worldwide made it impossible to trace the origin of the imported viruses. CONCLUSIONS: China was moving toward rubella elimination, as evidenced by the fact that previous endemic lineages were not detected. However, rubella reemerged in 2018 2019 due to the newly imported rubella viruses. Therefore, to realize the rubella elimination goal, joint efforts are required for all countries worldwide.