Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros

Base de dados
Tipo de documento
Assunto da revista
País de afiliação
Intervalo de ano de publicação
1.
Opt Lett ; 46(19): 4948-4951, 2021 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-34598240

RESUMO

We report a simple concept to implement a single-wavelength beam steering based on a liquid-cladded one-dimensional (1D) optical phased array (OPA). The beam steering was realized by modifying the waveguide mode effective index through replacing the liquid upper claddings. A prototype of a 32-channel liquid-cladded OPA was fabricated and characterized. Owing to the high refractive index range of liquids (>0.625), a maximum steering angle of >10∘ was achieved with the liquid range from 1.0 to 1.63 at a wavelength of 940 nm. Moreover, the liquid-cladded OPA reveals a quasi-continuous beam steering range of >29∘ by combining the liquid cladding tuning and discrete wavelength tuning of λ=785nm, 852 nm, and 940 nm. Further integration with optofluidic systems offers the OPA potential for low power consumption and all-fluidic beam steering operating at a single wavelength.

2.
Opt Lett ; 46(2): 286-289, 2021 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-33449009

RESUMO

In this Letter, the broadband operation in wavelengths from 520 nm to 980 nm is demonstrated on silicon nitride nanophotonic phased arrays. The widest beam steering angle of 65° on a silicon nitride phased array is achieved. The optical radiation efficiency of the main grating lobe in a broad wavelength range is measured and analyzed theoretically. The optical spots radiated from the phased array chip are studied at different wavelengths of lasers. The nanophotonic phased array is excited by a supercontinuum laser source for a wide range of beam steering for the first time to the best of our knowledge. It paves the way to tune the wavelength from visible to near infrared range for silicon nitride nanophotonic phased arrays.

3.
Opt Lett ; 46(22): 5699-5702, 2021 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-34780440

RESUMO

In this Letter, a two-dimensional (2D) beam steering on silicon nitride (SiNx) nanophotonic phased arrays from visible to near-infrared wavelengths is reported for the first time, to the best of our knowledge. In order to implement beam steering along the transverse direction for one-dimensional waveguide surface grating arrays, wavelengths from 650 to 980 nm provided by the supercontinuum laser are used to excite the phased array. Then the beams are parallel radiated with steering angles in a sequence of 26.84° to -16.54∘ along the transverse direction, and a continuous line in the far field consisting of parallel emitted spots is produced with a total view angle of 43.38°. Moreover, this continuous far-field line is steered along the longitudinal direction with massive wavelengths simultaneously tuned by phase shifts from -π/2 to over +π/2. This method with massive parallel wavelengths emitted paves a new way for 2D steering on SiNx nanophotonic phased arrays.

4.
Opt Express ; 23(20): 25700-6, 2015 Oct 05.
Artigo em Inglês | MEDLINE | ID: mdl-26480085

RESUMO

We demonstrate an ultrahigh speed germanium photodetector by introducing gold wires into the discrete ground electrodes with standard wire bonding technology. To engineer the parasitic parameter, the physical dimension of the gold wire used for wire bonding is specially designed with an inductance of about 450 pH. Simulation and experimental results show that the bandwidth of the photodetector can be effectively extended from less than 30 GHz to over 60 GHz.

5.
Opt Express ; 23(20): 26305-12, 2015 Oct 05.
Artigo em Inglês | MEDLINE | ID: mdl-26480144

RESUMO

We theoretically propose a silicon nitride (Si(3)N(4)) grating coupler (GC) with both ultrahigh efficiency and simplified fabrication processes. Instead of using a bottom distributed Bragg reflector (DBR) or metal reflector, a bottom Si grating reflector (GR) with comparable reflectivity is utilized to improve the coupling efficiency. The fully etched Si GR is designed based on an industrially standard silicon-on-insulator (SOI) wafer with 220 nm top Si layer. By properly adjusting the trench width and period length of the Si GR, a high reflectivity over 90% is obtained. The Si(3)N(4) GC is optimized based on a common 400 nm Si(3)N(4) layer sitting on the Si GR with a SiO(2) separation layer. With an appropriate distance between the Si(3)N(4) GC and bottom Si GR, a low coupling loss of -1.47 dB is theoretically obtained using uniform GC structure. A further record ultralow loss of -0.88 dB is predicted by apodizing the Si(3)N(4) GC. The specific fabrication processes and tolerance are also investigated. Compared with DBR, the bottom Si GR can be easily fabricated by single step of patterning and etching, simplifying the fabrication processes.

6.
Opt Express ; 22(6): 6647-52, 2014 Mar 24.
Artigo em Inglês | MEDLINE | ID: mdl-24664013

RESUMO

We fabricate and demonstrate a compact polarization insensitive filter for all-optical clock recovery (CR) based on silicon-on-insulator (SOI), which consists of a microring resonator (MRR) and two modified two-dimensional (2D) grating couplers. The distributed Bragg reflectors (DBRs) are introduced to improve the coupling efficiency of the 2D grating coupler. The MRR works as a comb filter for CR, while the 2D grating couplers serve as the polarization diversity unit to achieve a polarization insensitive operation. A subsequent semiconductor optical amplifier (SOA) performs the amplitude equalization. Based on this scheme, a good clock signal with 970 fs timing jitter can be achieved at 44 Gb/s from input signals with arbitrary polarization states.

7.
Opt Lett ; 39(21): 6273-6, 2014 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-25361332

RESUMO

We present an efficient segmented-stepwise method to design a short and low-loss mode-size converter. A silicon-on-insulator platform-based converter with 20 µm length and 95.2% conversion efficiency is acquired by taking only 10 optimization generations using 2D-FDTD method. A 3D-FDTD simulation is performed to verify the calculated results, returning an efficiency of 92.1%. The proposed device can be used to connect a 12-µm-wide waveguide and a 0.5-µm-wide single-mode waveguide, with comparable performance of a regular scheme using 150-µm-long linear taper. For demonstration, the converter was fabricated by electron-beam-lithography and inductively-coupled-plasma etching. A conversion loss of -0.62±0.02 dB at 1550 nm was experimentally measured.

8.
Guang Pu Xue Yu Guang Pu Fen Xi ; 31(4): 1042-6, 2011 Apr.
Artigo em Zh | MEDLINE | ID: mdl-21714256

RESUMO

In order to get the HPDLC grating with high diffraction efficiency and perfect surface morphology, NVP was added into the reaction system of fabricating gratings and then the influence of NVP on the reaction kinetics of HPDLC was described. The analysis showed that NVP significantly increased the rate of polymerization in HPDLC photopolymerization, and as the highly cross-linked polymer network forms, the small mono-vinyl NVP appeared to react preferentially with double bonds inthe reaction system, facilitating additional conversion of pendant double bonds otherwise trapped in the polymer network. Furthermore, NVP also enhanced the degree of phase separation and got perfect surface morphology as well as higher refractive index modulation. So, the diffraction efficiency of HPDLC gratings was remarkably improved. However, the surface morphology and diffraction efficiency of HPDLC gratings would be worse when the concentration of NVP was too high. In a word, the addition of NVP could significantly increase the polymerization rate and reaction extent of reaction monomer and ultimately get the HPDLC grating with high diffraction efficiency (96.36%) and perfect surface morphology.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA