Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 29
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Nature ; 2024 Jun 06.
Artigo em Inglês | MEDLINE | ID: mdl-38843826

RESUMO

Horses revolutionized human history with fast mobility1. However, the timeline between their domestication and widespread integration as a means of transportation remains contentious2-4. Here we assemble a large collection of 475 ancient horse genomes to assess the period when these animals were first reshaped by human agency in Eurasia. We find that reproductive control of the modern domestic lineage emerged ~2,200 BCE (Before Common Era), through close kin mating and shortened generation times. Reproductive control emerged following a severe domestication bottleneck starting no earlier than ~2,700 BCE, and coincided with a sudden expansion across Eurasia that ultimately resulted in the replacement of nearly every local horse lineage. This expansion marked the rise of widespread horse-based mobility in human history, which refutes the commonly-held narrative of large horse herds accompanying the massive migration of steppe peoples across Europe ~3,000 BCE and earlier3,5. Finally, we detect significantly shortened generation times at Botai ~3,500 BCE, a settlement from Central Asia associated with corrals and a subsistence economy centered on horses6,7. This supports local horse husbandry before the rise of modern domestic bloodlines.

2.
Nature ; 598(7882): 634-640, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34671162

RESUMO

Domestication of horses fundamentally transformed long-range mobility and warfare1. However, modern domesticated breeds do not descend from the earliest domestic horse lineage associated with archaeological evidence of bridling, milking and corralling2-4 at Botai, Central Asia around 3500 BC3. Other longstanding candidate regions for horse domestication, such as Iberia5 and Anatolia6, have also recently been challenged. Thus, the genetic, geographic and temporal origins of modern domestic horses have remained unknown. Here we pinpoint the Western Eurasian steppes, especially the lower Volga-Don region, as the homeland of modern domestic horses. Furthermore, we map the population changes accompanying domestication from 273 ancient horse genomes. This reveals that modern domestic horses ultimately replaced almost all other local populations as they expanded rapidly across Eurasia from about 2000 BC, synchronously with equestrian material culture, including Sintashta spoke-wheeled chariots. We find that equestrianism involved strong selection for critical locomotor and behavioural adaptations at the GSDMC and ZFPM1 genes. Our results reject the commonly held association7 between horseback riding and the massive expansion of Yamnaya steppe pastoralists into Europe around 3000 BC8,9 driving the spread of Indo-European languages10. This contrasts with the scenario in Asia where Indo-Iranian languages, chariots and horses spread together, following the early second millennium BC Sintashta culture11,12.


Assuntos
Domesticação , Genética Populacional , Cavalos , Animais , Arqueologia , Ásia , DNA Antigo , Europa (Continente) , Genoma , Pradaria , Cavalos/genética , Filogenia
3.
Mol Ecol ; : e17277, 2024 Jan 27.
Artigo em Inglês | MEDLINE | ID: mdl-38279695

RESUMO

Chromosomal inversions can play an important role in divergence and reproductive isolation by building and maintaining distinct allelic combinations between evolutionary lineages. Alternatively, they can take the form of balanced polymorphisms that segregate within populations until one arrangement becomes fixed. Many questions remain about how inversion polymorphisms arise, how they are maintained over the long term, and ultimately, whether and how they contribute to speciation. The long-snouted seahorse (Hippocampus guttulatus) is genetically subdivided into geographic lineages and marine-lagoon ecotypes, with shared structural variation underlying lineage and ecotype divergence. Here, we aim to characterize structural variants and to reconstruct their history and suspected role in ecotype formation. We generated a near chromosome-level genome assembly and described genome-wide patterns of diversity and divergence through the analysis of 112 whole-genome sequences from Atlantic, Mediterranean, and Black Sea populations. By also analysing linked-read sequencing data, we found evidence for two chromosomal inversions that were several megabases in length and showed contrasting allele frequency patterns between lineages and ecotypes across the species range. We reveal that these inversions represent ancient intraspecific polymorphisms, one likely being maintained by divergent selection and the other by pseudo-overdominance. A possible selective coupling between the two inversions was further supported by the absence of specific haplotype combinations and a putative functional interaction between the two inversions in reproduction. Lastly, we detected gene flux eroding divergence between inverted alleles at varying levels for the two inversions, with a likely impact on their dynamics and contribution to divergence and speciation.

4.
Mol Ecol ; 30(23): 6144-6161, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-33971056

RESUMO

The Bering Land Bridge (BLB) last connected Eurasia and North America during the Late Pleistocene. Although the BLB would have enabled transfers of terrestrial biota in both directions, it also acted as an ecological filter whose permeability varied considerably over time. Here we explore the possible impacts of this ecological corridor on genetic diversity within, and connectivity among, populations of a once wide-ranging group, the caballine horses (Equus spp.). Using a panel of 187 mitochondrial and eight nuclear genomes recovered from present-day and extinct caballine horses sampled across the Holarctic, we found that Eurasian horse populations initially diverged from those in North America, their ancestral continent, around 1.0-0.8 million years ago. Subsequent to this split our mitochondrial DNA analysis identified two bidirectional long-range dispersals across the BLB ~875-625 and ~200-50 thousand years ago, during the Middle and Late Pleistocene. Whole genome analysis indicated low levels of gene flow between North American and Eurasian horse populations, which probably occurred as a result of these inferred dispersals. Nonetheless, mitochondrial and nuclear diversity of caballine horse populations retained strong phylogeographical structuring. Our results suggest that barriers to gene flow, currently unidentified but possibly related to habitat distribution across Beringia or ongoing evolutionary divergence, played an important role in shaping the early genetic history of caballine horses, including the ancestors of living horses within Equus ferus.


Assuntos
DNA Mitocondrial , Genoma , Animais , Evolução Biológica , DNA Mitocondrial/genética , Cavalos/genética , Filogenia , Filogeografia
5.
Syst Biol ; 66(1): e1-e29, 2017 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-28173586

RESUMO

Ever since its emergence in 1984, the field of ancient DNA has struggled to overcome the challenges related to the decay of DNA molecules in the fossil record. With the recent development of high-throughput DNA sequencing technologies and molecular techniques tailored to ultra-damaged templates, it has now come of age, merging together approaches in phylogenomics, population genomics, epigenomics, and metagenomics. Leveraging on complete temporal sample series, ancient DNA provides direct access to the most important dimension in evolution­time, allowing a wealth of fundamental evolutionary processes to be addressed at unprecedented resolution. This review taps into the most recent findings in ancient DNA research to present analyses of ancient genomic and metagenomic data.


Assuntos
Evolução Biológica , DNA Antigo , Pesquisa/tendências , Evolução Molecular , Fósseis , Genômica/tendências
6.
Proc Natl Acad Sci U S A ; 112(50): E6889-97, 2015 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-26598656

RESUMO

Yakutia, Sakha Republic, in the Siberian Far East, represents one of the coldest places on Earth, with winter record temperatures dropping below -70 °C. Nevertheless, Yakutian horses survive all year round in the open air due to striking phenotypic adaptations, including compact body conformations, extremely hairy winter coats, and acute seasonal differences in metabolic activities. The evolutionary origins of Yakutian horses and the genetic basis of their adaptations remain, however, contentious. Here, we present the complete genomes of nine present-day Yakutian horses and two ancient specimens dating from the early 19th century and ∼5,200 y ago. By comparing these genomes with the genomes of two Late Pleistocene, 27 domesticated, and three wild Przewalski's horses, we find that contemporary Yakutian horses do not descend from the native horses that populated the region until the mid-Holocene, but were most likely introduced following the migration of the Yakut people a few centuries ago. Thus, they represent one of the fastest cases of adaptation to the extreme temperatures of the Arctic. We find cis-regulatory mutations to have contributed more than nonsynonymous changes to their adaptation, likely due to the comparatively limited standing variation within gene bodies at the time the population was founded. Genes involved in hair development, body size, and metabolic and hormone signaling pathways represent an essential part of the Yakutian horse adaptive genetic toolkit. Finally, we find evidence for convergent evolution with native human populations and woolly mammoths, suggesting that only a few evolutionary strategies are compatible with survival in extremely cold environments.


Assuntos
Adaptação Fisiológica/genética , Temperatura Baixa , Cavalos/fisiologia , Animais , Regiões Árticas , Evolução Molecular , Genoma , Cavalos/genética , Sibéria
7.
Proc Natl Acad Sci U S A ; 111(52): E5661-9, 2014 Dec 30.
Artigo em Inglês | MEDLINE | ID: mdl-25512547

RESUMO

The domestication of the horse ∼ 5.5 kya and the emergence of mounted riding, chariotry, and cavalry dramatically transformed human civilization. However, the genetics underlying horse domestication are difficult to reconstruct, given the near extinction of wild horses. We therefore sequenced two ancient horse genomes from Taymyr, Russia (at 7.4- and 24.3-fold coverage), both predating the earliest archeological evidence of domestication. We compared these genomes with genomes of domesticated horses and the wild Przewalski's horse and found genetic structure within Eurasia in the Late Pleistocene, with the ancient population contributing significantly to the genetic variation of domesticated breeds. We furthermore identified a conservative set of 125 potential domestication targets using four complementary scans for genes that have undergone positive selection. One group of genes is involved in muscular and limb development, articular junctions, and the cardiac system, and may represent physiological adaptations to human utilization. A second group consists of genes with cognitive functions, including social behavior, learning capabilities, fear response, and agreeableness, which may have been key for taming horses. We also found that domestication is associated with inbreeding and an excess of deleterious mutations. This genetic load is in line with the "cost of domestication" hypothesis also reported for rice, tomatoes, and dogs, and it is generally attributed to the relaxation of purifying selection resulting from the strong demographic bottlenecks accompanying domestication. Our work demonstrates the power of ancient genomes to reconstruct the complex genetic changes that transformed wild animals into their domesticated forms, and the population context in which this process took place.


Assuntos
Animais Domésticos/genética , Evolução Molecular , Genoma/fisiologia , Cavalos/genética , Animais , Sistema Cardiovascular/anatomia & histologia , Cães , Membro Posterior/anatomia & histologia , Membro Posterior/fisiologia , Cavalos/anatomia & histologia , Humanos , Endogamia , Federação Russa
8.
PLoS Genet ; 9(2): e1003296, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23459685

RESUMO

North East Europe harbors a high diversity of cultures and languages, suggesting a complex genetic history. Archaeological, anthropological, and genetic research has revealed a series of influences from Western and Eastern Eurasia in the past. While genetic data from modern-day populations is commonly used to make inferences about their origins and past migrations, ancient DNA provides a powerful test of such hypotheses by giving a snapshot of the past genetic diversity. In order to better understand the dynamics that have shaped the gene pool of North East Europeans, we generated and analyzed 34 mitochondrial genotypes from the skeletal remains of three archaeological sites in northwest Russia. These sites were dated to the Mesolithic and the Early Metal Age (7,500 and 3,500 uncalibrated years Before Present). We applied a suite of population genetic analyses (principal component analysis, genetic distance mapping, haplotype sharing analyses) and compared past demographic models through coalescent simulations using Bayesian Serial SimCoal and Approximate Bayesian Computation. Comparisons of genetic data from ancient and modern-day populations revealed significant changes in the mitochondrial makeup of North East Europeans through time. Mesolithic foragers showed high frequencies and diversity of haplogroups U (U2e, U4, U5a), a pattern observed previously in European hunter-gatherers from Iberia to Scandinavia. In contrast, the presence of mitochondrial DNA haplogroups C, D, and Z in Early Metal Age individuals suggested discontinuity with Mesolithic hunter-gatherers and genetic influx from central/eastern Siberia. We identified remarkable genetic dissimilarities between prehistoric and modern-day North East Europeans/Saami, which suggests an important role of post-Mesolithic migrations from Western Europe and subsequent population replacement/extinctions. This work demonstrates how ancient DNA can improve our understanding of human population movements across Eurasia. It contributes to the description of the spatio-temporal distribution of mitochondrial diversity and will be of significance for future reconstructions of the history of Europeans.


Assuntos
DNA Mitocondrial/genética , Fluxo Gênico , Variação Genética , Genoma Mitocondrial , Arqueologia , Europa (Continente) , Genética Populacional , Genótipo , Haplótipos , Humanos , Dinâmica Populacional , Federação Russa , Países Escandinavos e Nórdicos , Sibéria , População Branca/genética
9.
J Hum Evol ; 79: 4-20, 2015 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-25532800

RESUMO

The origin and diversification of modern humans have been characterized by major evolutionary transitions and demographic changes. Patterns of genetic variation within modern populations can help with reconstructing this ∼200 thousand year-long population history. However, by combining this information with genomic data from ancient remains, one can now directly access our evolutionary past and reveal our population history in much greater detail. This review outlines the main recent achievements in ancient DNA research and illustrates how the field recently moved from the polymerase chain reaction (PCR) amplification of short mitochondrial fragments to whole-genome sequencing and thereby revisited our own history. Ancient DNA research has revealed the routes that our ancestors took when colonizing the planet, whom they admixed with, how they domesticated plant and animal species, how they genetically responded to changes in lifestyle, and also, which pathogens decimated their populations. These approaches promise to soon solve many pending controversies about our own origins that are indecipherable from modern patterns of genetic variation alone, and therefore provide an extremely powerful toolkit for a new generation of molecular anthropologists.


Assuntos
Evolução Biológica , DNA , Genômica , Hominidae/genética , Paleontologia/métodos , Animais , DNA/análise , DNA/genética , Fósseis , Genoma Humano/genética , Humanos
10.
Biol Lett ; 11(3)2015 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-25762573

RESUMO

Hippidions were equids with very distinctive anatomical features. They lived in South America 2.5 million years ago (Ma) until their extinction approximately 10 000 years ago. The evolutionary origin of the three known Hippidion morphospecies is still disputed. Based on palaeontological data, Hippidion could have diverged from the lineage leading to modern equids before 10 Ma. In contrast, a much later divergence date, with Hippidion nesting within modern equids, was indicated by partial ancient mitochondrial DNA sequences. Here, we characterized eight Hippidion complete mitochondrial genomes at 3.4-386.3-fold coverage using target-enrichment capture and next-generation sequencing. Our dataset reveals that the two morphospecies sequenced (H. saldiasi and H. principale) formed a monophyletic clade, basal to extant and extinct Equus lineages. This contrasts with previous genetic analyses and supports Hippidion as a distinct genus, in agreement with palaeontological models. We date the Hippidion split from Equus at 5.6-6.5 Ma, suggesting an early divergence in North America prior to the colonization of South America, after the formation of the Panamanian Isthmus 3.5 Ma and the Great American Biotic Interchange.


Assuntos
DNA Mitocondrial/genética , Equidae/classificação , Fósseis , Genoma Mitocondrial , Animais , Sequência de Bases , Equidae/genética , Evolução Molecular , América do Norte , Filogenia , Análise de Sequência de DNA , América do Sul
11.
PLoS One ; 19(5): e0302646, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38709766

RESUMO

The analysis of the DNA entrapped in ancient shells of molluscs has the potential to shed light on the evolution and ecology of this very diverse phylum. Ancient genomics could help reconstruct the responses of molluscs to past climate change, pollution, and human subsistence practices at unprecedented temporal resolutions. Applications are however still in their infancy, partly due to our limited knowledge of DNA preservation in calcium carbonate shells and the need for optimized methods for responsible genomic data generation. To improve ancient shell genomic analyses, we applied high-throughput DNA sequencing to 27 Mytilus mussel shells dated to ~111-6500 years Before Present, and investigated the impact, on DNA recovery, of shell imaging, DNA extraction protocols and shell sub-sampling strategies. First, we detected no quantitative or qualitative deleterious effect of micro-computed tomography for recording shell 3D morphological information prior to sub-sampling. Then, we showed that double-digestion and bleach treatment of shell powder prior to silica-based DNA extraction improves shell DNA recovery, also suggesting that DNA is protected in preservation niches within ancient shells. Finally, all layers that compose Mytilus shells, i.e., the nacreous (aragonite) and prismatic (calcite) carbonate layers, with or without the outer organic layer (periostracum) proved to be valuable DNA reservoirs, with aragonite appearing as the best substrate for genomic analyses. Our work contributes to the understanding of long-term molecular preservation in biominerals and we anticipate that resulting recommendations will be helpful for future efficient and responsible genomic analyses of ancient mollusc shells.


Assuntos
Exoesqueleto , Genômica , Moluscos , Animais , Genômica/métodos , Moluscos/genética , Microtomografia por Raio-X , Carbonato de Cálcio , Sequenciamento de Nucleotídeos em Larga Escala , Fósseis
12.
Mol Biol Evol ; 29(11): 3345-58, 2012 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-22617951

RESUMO

Molecular evolutionary rate estimates have been shown to depend on the time period over which they are estimated. Factors such as demographic processes, calibration errors, purifying selection, and the heterogeneity of substitution rates among sites (RHAS) are known to affect the accuracy with which rates of evolution are estimated. We use mathematical modeling and Bayesian analyses of simulated sequence alignments to explore how mutational hotspots can lead to time-dependent rate estimates. Mathematical modeling shows that underestimation of molecular rates over increasing time scales is inevitable when RHAS is ignored. Although a gamma distribution is commonly used to model RHAS, we show that when the actual RHAS deviates from a gamma-like distribution, rates can either be under- or overestimated in a time-dependent manner. Simulations performed under different scenarios of RHAS confirm the mathematical modeling and demonstrate the impacts of time-dependent rates on estimates of divergence times. Most notably, erroneous rate estimates can have narrow credibility intervals, leading to false confidence in biased estimates of rates, and node ages. Surprisingly, large errors in estimates of overall molecular rate do not necessarily generate large errors in divergence time estimates. Finally, we illustrate the correlation between time-dependent rate patterns and differential saturation between quickly and slowly evolving sites. Our results suggest that data partitioning or simple nonparametric mixture models of RHAS significantly improve the accuracy with which node ages and substitution rates can be estimated.


Assuntos
Evolução Molecular , Mutação/genética , Sequência de Bases , Simulação por Computador , Variação Genética , Modelos Genéticos , Fatores de Tempo
13.
PLoS Biol ; 8(11): e1000536, 2010 Nov 09.
Artigo em Inglês | MEDLINE | ID: mdl-21085689

RESUMO

In Europe, the Neolithic transition (8,000-4,000 B.C.) from hunting and gathering to agricultural communities was one of the most important demographic events since the initial peopling of Europe by anatomically modern humans in the Upper Paleolithic (40,000 B.C.). However, the nature and speed of this transition is a matter of continuing scientific debate in archaeology, anthropology, and human population genetics. To date, inferences about the genetic make up of past populations have mostly been drawn from studies of modern-day Eurasian populations, but increasingly ancient DNA studies offer a direct view of the genetic past. We genetically characterized a population of the earliest farming culture in Central Europe, the Linear Pottery Culture (LBK; 5,500-4,900 calibrated B.C.) and used comprehensive phylogeographic and population genetic analyses to locate its origins within the broader Eurasian region, and to trace potential dispersal routes into Europe. We cloned and sequenced the mitochondrial hypervariable segment I and designed two powerful SNP multiplex PCR systems to generate new mitochondrial and Y-chromosomal data from 21 individuals from a complete LBK graveyard at Derenburg Meerenstieg II in Germany. These results considerably extend the available genetic dataset for the LBK (n = 42) and permit the first detailed genetic analysis of the earliest Neolithic culture in Central Europe (5,500-4,900 calibrated B.C.). We characterized the Neolithic mitochondrial DNA sequence diversity and geographical affinities of the early farmers using a large database of extant Western Eurasian populations (n = 23,394) and a wide range of population genetic analyses including shared haplotype analyses, principal component analyses, multidimensional scaling, geographic mapping of genetic distances, and Bayesian Serial Simcoal analyses. The results reveal that the LBK population shared an affinity with the modern-day Near East and Anatolia, supporting a major genetic input from this area during the advent of farming in Europe. However, the LBK population also showed unique genetic features including a clearly distinct distribution of mitochondrial haplogroup frequencies, confirming that major demographic events continued to take place in Europe after the early Neolithic.


Assuntos
Agricultura , DNA Mitocondrial/genética , Emigração e Imigração , Fósseis , Europa (Continente) , Humanos
14.
Science ; 379(6639): 1316-1323, 2023 03 31.
Artigo em Inglês | MEDLINE | ID: mdl-36996225

RESUMO

The horse is central to many Indigenous cultures across the American Southwest and the Great Plains. However, when and how horses were first integrated into Indigenous lifeways remain contentious, with extant models derived largely from colonial records. We conducted an interdisciplinary study of an assemblage of historic archaeological horse remains, integrating genomic, isotopic, radiocarbon, and paleopathological evidence. Archaeological and modern North American horses show strong Iberian genetic affinities, with later influx from British sources, but no Viking proximity. Horses rapidly spread from the south into the northern Rockies and central plains by the first half of the 17th century CE, likely through Indigenous exchange networks. They were deeply integrated into Indigenous societies before the arrival of 18th-century European observers, as reflected in herd management, ceremonial practices, and culture.


Assuntos
Animais Domésticos , Domesticação , Cavalos , Animais , Humanos , Arqueologia , Estados Unidos
15.
mSystems ; 6(6): e0131521, 2021 Dec 21.
Artigo em Inglês | MEDLINE | ID: mdl-34931883

RESUMO

Like modern metagenomics, ancient metagenomics is a highly data-rich discipline, with the added challenge that the DNA of interest is degraded and, depending on the sample type, in low abundance. This requires the application of specialized measures during molecular experiments and computational analyses. Furthermore, researchers often work with finite sample sizes, which impedes optimal experimental design and control of confounding factors, and with ethically sensitive samples necessitating the consideration of additional guidelines. In September 2020, early career researchers in the field of ancient metagenomics met (Standards, Precautions & Advances in Ancient Metagenomics 2 [SPAAM2] community meeting) to discuss the state of the field and how to address current challenges. Here, in an effort to bridge the gap between ancient and modern metagenomics, we highlight and reflect upon some common misconceptions, provide a brief overview of the challenges in our field, and point toward useful resources for potential reviewers and newcomers to the field.

16.
iScience ; 24(4): 102383, 2021 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-33981971

RESUMO

The 17th century plague epidemic had a particularly strong demographic toll in Southern Europe, especially Italy, where it caused long-lasting economical damage. Whether this resulted from ineffective sanitation measures or more pathogenic Yersinia pestis strains remains unknown. DNA screening of 26 skeletons from the 1629-1630 plague cemetery of Lariey (French Alps) identified two teeth rich in plague genetic material. Further sequencing revealed two Y. pestis genomes phylogenetically closest to those from the 1636 outbreak of San Procolo a Naturno, Italy. They both belonged to a cluster extending from the Alps to Northern Germany that probably propagated during the Thirty Years war. Sequence variation did not support faster evolutionary rates in the Italian genomes and revealed only rare private non-synonymous mutations not affecting virulence genes. This, and the more heterogeneous spatial diffusion of the epidemic outside Italy, suggests environmental or social rather than biological causes for the severe Italian epidemic trajectory.

17.
Curr Biol ; 31(5): 1072-1083.e10, 2021 03 08.
Artigo em Inglês | MEDLINE | ID: mdl-33434506

RESUMO

The transition from the Late Neolithic to the Bronze Age has witnessed important population and societal changes in western Europe.1 These include massive genomic contributions of pastoralist herders originating from the Pontic-Caspian steppes2,3 into local populations, resulting from complex interactions between collapsing hunter-gatherers and expanding farmers of Anatolian ancestry.4-8 This transition is documented through extensive ancient genomic data from present-day Britain,9,10 Ireland,11,12 Iberia,13 Mediterranean islands,14,15 and Germany.8 It remains, however, largely overlooked in France, where most focus has been on the Middle Neolithic (n = 63),8,9,16 with the exception of one Late Neolithic genome sequenced at 0.05× coverage.16 This leaves the key transitional period covering ∼3,400-2,700 cal. years (calibrated years) BCE genetically unsampled and thus the exact time frame of hunter-gatherer persistence and arrival of steppe migrations unknown. To remediate this, we sequenced 24 ancient human genomes from France spanning ∼3,400-1,600 cal. years BCE. This reveals Late Neolithic populations that are genetically diverse and include individuals with dark skin, hair, and eyes. We detect heterogeneous hunter-gatherer ancestries within Late Neolithic communities, reaching up to ∼63.3% in some individuals, and variable genetic contributions of steppe herders in Bell Beaker populations. We provide an estimate as late as ∼3,800 years BCE for the admixture between Neolithic and Mesolithic populations and as early as ∼2,650 years BCE for the arrival of steppe-related ancestry. The genomic heterogeneity characterized underlines the complex history of human interactions even at the local scale.


Assuntos
DNA Antigo , Migração Humana , Europa (Continente) , França , Genoma Humano , Genômica , História Antiga , Humanos
18.
Nat Commun ; 11(1): 939, 2020 02 24.
Artigo em Inglês | MEDLINE | ID: mdl-32094358

RESUMO

The island of Sardinia has been of particular interest to geneticists for decades. The current model for Sardinia's genetic history describes the island as harboring a founder population that was established largely from the Neolithic peoples of southern Europe and remained isolated from later Bronze Age expansions on the mainland. To evaluate this model, we generate genome-wide ancient DNA data for 70 individuals from 21 Sardinian archaeological sites spanning the Middle Neolithic through the Medieval period. The earliest individuals show a strong affinity to western Mediterranean Neolithic populations, followed by an extended period of genetic continuity on the island through the Nuragic period (second millennium BCE). Beginning with individuals from Phoenician/Punic sites (first millennium BCE), we observe spatially-varying signals of admixture with sources principally from the eastern and northern Mediterranean. Overall, our analysis sheds light on the genetic history of Sardinia, revealing how relationships to mainland populations shifted over time.


Assuntos
DNA Antigo , DNA Mitocondrial/genética , Genética Populacional/história , Migração Humana , Modelos Genéticos , Arqueologia/métodos , Restos Mortais , Cromossomos Humanos X/genética , Cromossomos Humanos Y/genética , Conjuntos de Dados como Assunto , Feminino , História do Século XV , História do Século XVI , História do Século XVII , História do Século XVIII , História do Século XIX , História do Século XX , História do Século XXI , História Antiga , História Medieval , Humanos , Itália , Masculino , Análise de Sequência de DNA
19.
Front Microbiol ; 9: 227, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29515533

RESUMO

The Brown Ring Disease (BRD) caused high mortality rates since 1986 in the Manila clam Venerupis philippinarum introduced and cultured in Western Europe from the 1970s. The causative agent of BRD is a Gram-Negative bacterium, Vibrio tapetis, which is also pathogenic to fish. Here we report the first assembly of the complete genome of V. tapetis CECT4600T, together with the genome sequences of 16 additional strains isolated across a broad host and geographic range. Our extensive genome dataset allowed us to describe the pathogen pan- and core genomes and to identify putative virulence factors. The V. tapetis core genome consists of 3,352 genes, including multiple potential virulence factors represented by haemolysins, transcriptional regulators, Type I restriction modification system, GGDEF domain proteins, several conjugative plasmids, and a Type IV secretion system. Future research on the coevolutionary arms race between V. tapetis virulence factors and host resistance mechanisms will improve our understanding of how pathogenicity develops in this emerging pathogen.

20.
Mol Ecol Resour ; 17(4): 742-751, 2017 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-27790833

RESUMO

The feasibility of genome-scale studies from archaeological material remains critically dependent on the ability to access endogenous, authentic DNA. In the majority of cases, this represents a few per cent of the DNA extract, at most. A number of specific pre-extraction protocols for bone powder aimed to improve ancient DNA recovery before library amplification have recently been developed. Here, we test the effects of combining two of such protocols, a bleach wash and a predigestion step, on 12 bone samples of Atlantic cod and domestic horse aged 750-1350 cal. years before present. Using high-throughput sequencing, we show that combined together, bleach wash and predigestion consistently yield DNA libraries with higher endogenous content than either of these methods alone. Additionally, the molecular complexity of these libraries is improved and endogenous DNA templates show larger size distributions. Other library characteristics, such as DNA damage profiles or the composition of microbial communities, are little affected by the pre-extraction protocols. Application of the combined protocol presented in this study will facilitate the genetic analysis of an increasing number of ancient remains and will reduce the cost of whole-genome sequencing.


Assuntos
Osso e Ossos , DNA Antigo/isolamento & purificação , Hipoclorito de Sódio/química , Animais , Gadus morhua , Biblioteca Gênica , Sequenciamento de Nucleotídeos em Larga Escala , Cavalos , Análise de Sequência de DNA
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA