Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 98
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Int J Mol Sci ; 24(13)2023 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-37445810

RESUMO

Intracellular pH (pHi) regulation is a challenge for the exocrine pancreas, where the luminal secretion of bicarbonate-rich fluid is accompanied by interstitial flows of acid. This acid-base transport requires a plethora of ion transporters, including bicarbonate transporters and the Na+/H+ exchanger isoform 1 (NHE1), which are dysregulated in Pancreatic Ductal Adenocarcinoma (PDAC). PDAC progression is favored by a Collagen-I rich extracellular matrix (ECM) which exacerbates the physiological interstitial acidosis. In organotypic cultures of normal human pancreatic cells (HPDE), parenchymal cancer cells (CPCs) and cancer stem cells (CSCs) growing on matrices reproducing ECM changes during progression, we studied resting pHi, the pHi response to fluxes of NaHCO3 and acidosis and the role of NHE1 in pHi regulation. Our findings show that: (i) on the physiological ECM, HPDE cells have the most alkaline pHi, followed by CSCs and CPCs, while a Collagen I-rich ECM reverses the acid-base balance in cancer cells compared to normal cells; (ii) both resting pHi and pHi recovery from an acid load are reduced by extracellular NaHCO3, especially in HPDE cells on a normal ECM; (iii) cancer cell NHE1 activity is less affected by NaHCO3. We conclude that ECM composition and the fluctuations of pHe cooperate to predispose pHi homeostasis towards the presence of NaHCO3 gradients similar to that expected in the tumor.


Assuntos
Acidose , Neoplasias , Humanos , Concentração de Íons de Hidrogênio , Bicarbonatos/metabolismo , Matriz Extracelular/metabolismo , Colágeno Tipo I , Ductos Pancreáticos/metabolismo , Células Epiteliais/metabolismo , Trocadores de Sódio-Hidrogênio
2.
Int J Mol Sci ; 23(13)2022 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-35806308

RESUMO

Ion channels are pore-forming proteins that allow ions to flow across plasma membranes and intracellular organelles in both excitable and non-excitable cells. They are involved in the regulation of several biological processes (i.e., proliferation, cell volume and shape, differentiation, migration, and apoptosis). Recently, the aberrant expression of ion channels has emerged as an important step of malignant transformation, tumor progression, and drug resistance, leading to the idea of "onco-channelopathy". Here, we review the contribution of ion channels and transporters in multiple myeloma (MM), a hematological neoplasia characterized by the expansion of tumor plasma cells (MM cells) in the bone marrow (BM). Deregulation of ion channels sustains MM progression by modulating intracellular pathways that promote MM cells' survival, proliferation, and drug resistance. Finally, we focus on the promising role of ion channels as therapeutic targets for the treatment of MM patients in a combination strategy with currently used anti-MM drugs to improve their cytotoxic activity and reduce adverse effects.


Assuntos
Antineoplásicos , Mieloma Múltiplo , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Apoptose , Humanos , Canais Iônicos/metabolismo , Íons/metabolismo , Mieloma Múltiplo/tratamento farmacológico , Mieloma Múltiplo/metabolismo
3.
Muscle Nerve ; 64(1): 95-99, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-33835497

RESUMO

INTRODUCTION/AIMS: Paramyotonia congenita (PMC) is a skeletal muscle sodium channelopathy characterized by paradoxical myotonia, cold sensitivity, and exercise/cold-induced paralysis. Treatment with sodium-channel-blocking antiarrhythmic agents may expose patients to a risk of arrhythmia or may be poorly tolerated or ineffective. In this study we explored the effectiveness of non-antiarrhythmic sodium-channel blockers in two patients with PMC. METHODS: Earlier treatment with mexiletine was discontinued for gastrointestinal side effects in one of the patients and lack of clinical benefit in the other. One patient received lacosamide, ranolazine, and buprenorphine, and the other was given buprenorphine only. Drug efficacy was assessed by clinical scores, timed tests, and by long and short exercise tests. RESULTS: In both patients, buprenorphine improved pain scores by at least 50%, stiffness and weakness levels, and handgrip/eyelid-opening times. The fall in compound muscle action potential (CMAP) during short exercise normalized in both patients at baseline, and improved after cooling. During long exercise, one patient showed an earlier recovery of CMAP, and the other patient had a less severe decrease (<60%). With buprenorphine, the fall in CMAP induced by cooling normalized in one patient (from -72% to -4%) and improved (from -49% to -37%) in the other patient. DISCUSSION: Buprenorphine showed promising results for the treatment of exercise-induced paralysis and cold intolerance in the two patients assessed. The exercise test may be useful for quantitative assessment of treatment response. Further studies on a larger number of patients, under carefully controlled conditions, should be considered to address the effectiveness and long-term tolerability of this therapeutic option.


Assuntos
Analgésicos Opioides/uso terapêutico , Buprenorfina/uso terapêutico , Transtornos Miotônicos/diagnóstico , Transtornos Miotônicos/tratamento farmacológico , Analgésicos Opioides/farmacologia , Buprenorfina/farmacologia , Teste de Esforço/efeitos dos fármacos , Teste de Esforço/métodos , Humanos , Masculino , Pessoa de Meia-Idade , Transtornos Miotônicos/genética , Canal de Sódio Disparado por Voltagem NAV1.4/genética , Resultado do Tratamento
4.
Pflugers Arch ; 472(7): 961-975, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32361781

RESUMO

In 1970, the study of the pathomechanisms underlying myotonia in muscle fibers isolated from myotonic goats highlighted the importance of chloride conductance for skeletal muscle function; 20 years later, the human ClC-1 chloride channel has been cloned; last year, the crystal structure of human protein has been solved. Over the years, the efforts of many researchers led to significant advances in acknowledging the role of ClC-1 in skeletal muscle physiology and the mechanisms through which ClC-1 dysfunctions lead to impaired muscle function. The wide spectrum of pathophysiological conditions associated with modification of ClC-1 activity, either as the primary cause, such as in myotonia congenita, or as a secondary adaptive mechanism in other neuromuscular diseases, supports the idea that ClC-1 is relevant to preserve not only for skeletal muscle excitability, but also for skeletal muscle adaptation to physiological or harmful events. Improving this understanding could open promising avenues toward the development of selective and safe drugs targeting ClC-1, with the aim to restore normal muscle function. This review summarizes the most relevant research on ClC-1 channel physiology, associated diseases, and pharmacology.


Assuntos
Canais de Cloreto/metabolismo , Cloretos/metabolismo , Músculo Esquelético/metabolismo , Animais , Humanos , Miotonia Congênita/metabolismo
5.
Molecules ; 25(15)2020 Jul 22.
Artigo em Inglês | MEDLINE | ID: mdl-32707914

RESUMO

The 1,3-benzothiazole (BTZ) ring may offer a valid option for scaffold-hopping from indole derivatives. Several BTZs have clinically relevant roles, mainly as CNS medicines and diagnostic agents, with riluzole being one of the most famous examples. Riluzole is currently the only approved drug to treat amyotrophic lateral sclerosis (ALS) but its efficacy is marginal. Several clinical studies have demonstrated only limited improvements in survival, without benefits to motor function in patients with ALS. Despite significant clinical trial efforts to understand the genetic, epigenetic, and molecular pathways linked to ALS pathophysiology, therapeutic translation has remained disappointingly slow, probably due to the complexity and the heterogeneity of this disease. Many other drugs to tackle ALS have been tested for 20 years without any success. Dexpramipexole is a BTZ structural analog of riluzole and was a great hope for the treatment of ALS. In this review, as an interesting case study in the development of a new medicine to treat ALS, we present the strategy of the development of dexpramipexole, which was one of the most promising drugs against ALS.


Assuntos
Esclerose Lateral Amiotrófica/tratamento farmacológico , Benzotiazóis/síntese química , Fármacos Neuroprotetores/síntese química , Pramipexol/química , Riluzol/química , Animais , Benzotiazóis/química , Benzotiazóis/farmacologia , Ensaios Clínicos como Assunto , Aprovação de Drogas , Avaliação Pré-Clínica de Medicamentos , Humanos , Fármacos Neuroprotetores/farmacologia , Bibliotecas de Moléculas Pequenas/síntese química , Bibliotecas de Moléculas Pequenas/farmacologia , Tolueno/análogos & derivados , Tolueno/química , Resultado do Tratamento
6.
Pharmacol Res ; 141: 224-235, 2019 03.
Artigo em Inglês | MEDLINE | ID: mdl-30611854

RESUMO

Sodium channel myotonia and paramyotonia congenita are caused by gain-of-function mutations in the skeletal muscle voltage-gated sodium channel hNav1.4. The first-line drug is the sodium channel blocker mexiletine; however, some patients show side effects or limited responses. We previously showed that two hNav1.4 mutations, p.G1306E and p.P1158L, reduce mexiletine potency in vitro, whereas another sodium channel blocker, flecainide, is less sensitive to mutation-induced gating defects. This observation was successfully translated to p.G1306E and p.P1158L carriers. Thus, the aim of this study was to perform a pharmacological characterization of myotonic Nav1.4 mutations clustered near the fast inactivation gate of the channel. We chose seven mutations (p.V1293I, p.N1297S, p.N1297K, p.F1298C, p.G1306E, p.I1310N, and p.T1313M) from the database of Italian and French networks for muscle channelopathies. Recombinant hNav1.4 mutants were expressed in HEK293T cells for functional and pharmacological characterization using the patch-clamp technique. All the studied mutations impair the kinetics and/or voltage dependence of fast inactivation, which is likely the main mechanism responsible for myotonia. The severity of myotonia is well-correlated to the enhancement of window currents generated by the intersection of the activation and fast inactivation voltage dependence. Five of the six mutants displaying a significant positive shift of fast inactivation voltage dependence reduced mexiletine inhibition in an experimental condition mimicking myotonia. In contrast, none of the mutations impairs flecainide block nor does p.T1313M impair propafenone block, indicating that class Ic antiarrhythmics may constitute a valuable alternative. Our study suggests that mutation-driven therapy would be beneficial to myotonic patients, greatly improving their quality of life.


Assuntos
Transtornos Miotônicos/genética , Canal de Sódio Disparado por Voltagem NAV1.4/genética , Adolescente , Adulto , Criança , Pré-Escolar , Feminino , Células HEK293 , Humanos , Recém-Nascido , Ativação do Canal Iônico , Masculino , Pessoa de Meia-Idade , Mutação , Transtornos Miotônicos/tratamento farmacológico , Adulto Jovem
7.
Hum Mutat ; 39(9): 1273-1283, 2018 09.
Artigo em Inglês | MEDLINE | ID: mdl-29935101

RESUMO

Myotonia congenita (MC) is a skeletal-muscle hyperexcitability disorder caused by loss-of-function mutations in the ClC-1 chloride channel. Mutations are scattered over the entire sequence of the channel protein, with more than 30 mutations located in the poorly characterized cytosolic C-terminal domain. In this study, we characterized, through patch clamp, seven ClC-1 mutations identified in patients affected by MC of various severities and located in the C-terminal region. The p.Val829Met, p.Thr832Ile, p.Val851Met, p.Gly859Val, and p.Leu861Pro mutations reside in the CBS2 domain, while p.Pro883Thr and p.Val947Glu are in the C-terminal peptide. We showed that the functional properties of mutant channels correlated with the clinical phenotypes of affected individuals. In addition, we defined clusters of ClC-1 mutations within CBS2 and C-terminal peptide subdomains that share the same functional defect: mutations between 829 and 835 residues and in residue 883 induced an alteration of voltage dependence, mutations between 851 and 859 residues, and in residue 947 induced a reduction of chloride currents, whereas mutations on 861 residue showed no obvious change in ClC-1 function. This study improves our understanding of the mechanisms underlying MC, sheds light on the role of the C-terminal region in ClC-1 function, and provides information to develop new antimyotonic drugs.


Assuntos
Canais de Cloreto/genética , Análise Mutacional de DNA , Mutação/genética , Miotonia Congênita/genética , Adolescente , Adulto , Aminoácidos/genética , Feminino , Humanos , Ativação do Canal Iônico/genética , Masculino , Pessoa de Meia-Idade , Miotonia Congênita/tratamento farmacológico , Miotonia Congênita/fisiopatologia , Técnicas de Patch-Clamp , Peptídeos/genética , Domínios Proteicos/genética
8.
Handb Exp Pharmacol ; 246: 233-250, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-28939972

RESUMO

Benzothiazole is a versatile fused heterocycle that aroused much interest in drug discovery as anticonvulsant, neuroprotective, analgesic, anti-inflammatory, antimicrobial, and anticancer. Two benzothiazolamines, riluzole and lubeluzole, are known blockers of voltage-gated sodium (Nav) channels. Riluzole is clinically used as a neuroprotectant in amyotrophic lateral sclerosis. Inhibition of Nav channels by riluzole is voltage-dependent due to preferential binding to inactivated sodium channels. Yet the drug exerts little use-dependent block, probably because it lacks protonable amine. One important property is riluzole ability to inhibit persistent Na+ currents, which likely contributes to its neuroprotective activity. Lubeluzole showed promising neuroprotective effects in animal stroke models, but failed to show benefits in acute ischemic stroke in humans. One important concern is its propensity to prolong the cardiac QT interval, due to hERG K+ channel block. Lubeluzole very potently inhibits Nav channels in a voltage- and use-dependent manner, due to its great preferential affinity for inactivated channels and the presence of a protonable amine group. Patch-clamp experiments suggest that the binding sites of both drugs overlap the local anesthetic receptor within the ion-conducting pathway. Riluzole and lubeluzole displayed very potent antimyotonic activity in a rat model of myotonia, a pathological skeletal muscle condition characterized by high-frequency runs of action potentials. Such results well support the repurposing of riluzole as an antimyotonic drug, allowing the launch of a pilot study in myotonic patients. Riluzole, lubeluzole, and new Nav channel blockers built on the benzothiazolamine scaffold will certainly continue to be investigated for possible clinical applications.


Assuntos
Piperidinas/farmacologia , Riluzol/farmacologia , Tiazóis/farmacologia , Canais de Sódio Disparados por Voltagem/efeitos dos fármacos , Animais , Humanos , Miotonia/tratamento farmacológico , Piperidinas/uso terapêutico , Riluzol/uso terapêutico , Tiazóis/uso terapêutico
9.
Mol Cell Neurosci ; 83: 6-12, 2017 09.
Artigo em Inglês | MEDLINE | ID: mdl-28666963

RESUMO

Episodic ataxia type 1 (EA1) is a human dominant neurological syndrome characterized by continuous myokymia, episodic attacks of ataxic gait and spastic contractions of skeletal muscles that can be triggered by emotional stress and fatigue. This rare disease is caused by missense mutations in the KCNA1 gene coding for the neuronal voltage gated potassium channel Kv1.1, which contributes to nerve cell excitability in the cerebellum, hippocampus, cortex and peripheral nervous system. We identified a novel KCNA1 mutation, E283K, in an Italian proband presenting with paroxysmal ataxia and myokymia aggravated by painful contractures and metabolic dysfunctions. The E283K mutation is located in the S3-S4 extracellular linker belonging to the voltage sensor domain of Kv channels. In order to test whether the E283K mutation affects Kv1.1 biophysical properties we transfected HEK293 cells with WT or mutant cDNAs alone or in a 1:1 combination, and recorded relative potassium currents in the whole-cell configuration of patch-clamp. Mutant E283K channels display voltage-dependent activation shifted by 10mV toward positive potentials and kinetics of activation slowed by ~2 fold compared to WT channels. Potassium currents resulting from heteromeric WT/E283K channels show voltage-dependent gating and kinetics of activation intermediate between WT and mutant homomeric channels. Based on homology modeling studies of the mutant E283K, we propose a molecular explanation for the reduced voltage sensitivity and slow channel opening. Overall, our results suggest that the replacement of a negatively charged residue with a positively charged lysine at position 283 in Kv1.1 causes a drop of potassium current that likely accounts for EA-1 symptoms in the heterozygous carrier.


Assuntos
Ataxia/genética , Canal de Potássio Kv1.1/metabolismo , Mutação de Sentido Incorreto , Mioquimia/genética , Ataxia/metabolismo , Ataxia/patologia , Feminino , Células HEK293 , Humanos , Ativação do Canal Iônico , Canal de Potássio Kv1.1/química , Canal de Potássio Kv1.1/genética , Pessoa de Meia-Idade , Mioquimia/metabolismo , Mioquimia/patologia , Linhagem
10.
Neurogenetics ; 18(4): 219-225, 2017 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-28993909

RESUMO

Non-dystrophic myotonias are characterized by clinical overlap making it challenging to establish genotype-phenotype correlations. We report clinical and electrophysiological findings in a girl and her father concomitantly harbouring single heterozygous mutations in SCN4A and CLCN1 genes. Functional characterization of N1297S hNav1.4 mutant was performed by patch clamp. The patients displayed a mild phenotype, mostly resembling a sodium channel myotonia. The CLCN1 c.501C>G (p.F167L) mutation has been already described in recessive pedigrees, whereas the SCN4A c.3890A>G (p.N1297S) variation is novel. Patch clamp experiments showed impairment of fast and slow inactivation of the mutated Nav1.4 sodium channel. The present findings suggest that analysis of both SCN4A and CLCN1 genes should be considered in myotonic patients with atypical clinical and neurophysiological features.


Assuntos
Canais de Cloreto/genética , Mutação/genética , Miotonia/genética , Canal de Sódio Disparado por Voltagem NAV1.4/genética , Adulto , Feminino , Estudos de Associação Genética/métodos , Heterozigoto , Humanos , Miotonia/diagnóstico , Linhagem , Fenótipo
11.
FASEB J ; 30(10): 3285-3295, 2016 10.
Artigo em Inglês | MEDLINE | ID: mdl-27324117

RESUMO

Myotonia congenita is an inherited disease that is characterized by impaired muscle relaxation after contraction caused by loss-of-function mutations in the skeletal muscle ClC-1 channel. We report a novel ClC-1 mutation, T335N, that is associated with a mild phenotype in 1 patient, located in the extracellular I-J loop. The purpose of this study was to provide a solid correlation between T335N dysfunction and clinical symptoms in the affected patient as well as to offer hints for drug development. Our multidisciplinary approach includes patch-clamp electrophysiology on T335N and ClC-1 wild-type channels expressed in tsA201 cells, Western blot and quantitative PCR analyses on muscle biopsies from patient and unaffected individuals, and molecular dynamics simulations using a homology model of the ClC-1 dimer. T335N channels display reduced chloride currents as a result of gating alterations rather than altered surface expression. Molecular dynamics simulations suggest that the I-J loop might be involved in conformational changes that occur at the dimer interface, thus affecting gating. Finally, the gene expression profile of T335N carrier showed a diverse expression of K+ channel genes, compared with control individuals, as potentially contributing to the phenotype. This experimental paradigm satisfactorily explained myotonia in the patient. Furthermore, it could be relevant to the study and therapy of any channelopathy.-Imbrici, P., Altamura, C., Camerino, G. M., Mangiatordi, G. F., Conte, E., Maggi, L., Brugnoni, R., Musaraj, K., Caloiero, R., Alberga, D., Marsano, R. M., Ricci, G., Siciliano, G., Nicolotti, O., Mora, M., Bernasconi, P., Desaphy, J.-F., Mantegazza, R., Camerino, D. C. Multidisciplinary study of a new ClC-1 mutation causing myotonia congenita: a paradigm to understand and treat ion channelopathies.


Assuntos
Canalopatias/metabolismo , Canais de Cloreto/genética , Canais de Cloreto/metabolismo , Fenômenos Eletrofisiológicos/genética , Mutação/genética , Miotonia Congênita/metabolismo , Humanos , Ativação do Canal Iônico/genética , Ativação do Canal Iônico/fisiologia , Músculo Esquelético/metabolismo , Técnicas de Patch-Clamp/métodos , Fenótipo
12.
Toxicol Appl Pharmacol ; 306: 36-46, 2016 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-27377005

RESUMO

Statin-induced skeletal muscle damage in rats is associated to the reduction of the resting sarcolemmal chloride conductance (gCl) and ClC-1 chloride channel expression. These drugs also affect the ClC-1 regulation by increasing protein kinase C (PKC) activity, which phosphorylate and close the channel. Also the intracellular resting calcium (restCa) level is increased. Similar alterations are observed in skeletal muscles of aged rats, suggesting a higher risk of statin myotoxicity. To verify this hypothesis, we performed a 4-5-weeks atorvastatin treatment of 24-months-old rats to evaluate the ClC-1 channel function by the two-intracellular microelectrodes technique as well as transcript and protein expression of different genes sensitive to statins by quantitative real-time-PCR and western blot analysis. The restCa was measured using FURA-2 imaging, and histological analysis of muscle sections was performed. The results show a marked reduction of resting gCl, in agreement with the reduced ClC-1 mRNA and protein expression in atorvastatin-treated aged rats, with respect to treated adult animals. The observed changes in myocyte-enhancer factor-2 (MEF2) expression may be involved in ClC-1 expression changes. The activity of PKC was also increased and further modulate the gCl in treated aged rats. In parallel, a marked reduction of the expression of glycolytic and mitochondrial enzymes demonstrates an impairment of muscle metabolism. No worsening of restCa or histological features was found in statin-treated aged animals. These findings suggest that a strong reduction of gCl and alteration of muscle metabolism coupled to muscle atrophy may contribute to the increased risk of statin-induced myopathy in the elderly.


Assuntos
Envelhecimento/fisiologia , Atorvastatina/efeitos adversos , Inibidores de Hidroximetilglutaril-CoA Redutases/efeitos adversos , Atrofia Muscular/induzido quimicamente , Envelhecimento/metabolismo , Animais , Atorvastatina/sangue , Atorvastatina/farmacocinética , Cálcio/metabolismo , Canais de Cloreto/genética , Canais de Cloreto/metabolismo , Creatina Quinase/sangue , Inibidores de Hidroximetilglutaril-CoA Redutases/sangue , Inibidores de Hidroximetilglutaril-CoA Redutases/farmacocinética , Fatores de Transcrição MEF2 , Masculino , Músculo Esquelético/efeitos dos fármacos , Músculo Esquelético/metabolismo , Músculo Esquelético/patologia , Músculo Esquelético/fisiologia , Atrofia Muscular/metabolismo , Atrofia Muscular/patologia , Atrofia Muscular/fisiopatologia , Proteína Quinase C/genética , Proteína Quinase C/metabolismo , Ratos Wistar
13.
Pflugers Arch ; 466(12): 2215-28, 2014 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-24643479

RESUMO

In skeletal muscle, the resting chloride conductance (gCl), due to the ClC-1 chloride channel, controls the sarcolemma electrical stability. Indeed, loss-of-function mutations in ClC-1 gene are responsible of myotonia congenita. The ClC-1 channel can be phosphorylated and inactivated by protein kinases C (PKC), but the relative contribution of each PKC isoforms is unknown. Here, we investigated on the role of PKCθ in the regulation of ClC-1 channel expression and activity in fast- and slow-twitch muscles of mouse models lacking PKCθ. Electrophysiological studies showed an increase of gCl in the PKCθ-null mice with respect to wild type. Muscle excitability was reduced accordingly. However, the expression of the ClC-1 channel, evaluated by qRT-PCR, was not modified in PKCθ-null muscles suggesting that PKCθ affects the ClC-1 activity. Pharmacological studies demonstrated that although PKCθ appreciably modulates gCl, other isoforms are still active and concur to this role. The modification of gCl in PKCθ-null muscles has caused adaptation of the expression of phenotype-specific genes, such as calcineurin and myocyte enhancer factor-2, supporting the role of PKCθ also in the settings of muscle phenotype. Importantly, the lack of PKCθ has prevented the aging-related reduction of gCl, suggesting that its modulation may represent a new strategy to contrast the aging process.


Assuntos
Potenciais de Ação , Canais de Cloreto/metabolismo , Isoenzimas/metabolismo , Fibras Musculares de Contração Rápida/metabolismo , Fibras Musculares de Contração Lenta/metabolismo , Fenótipo , Proteína Quinase C/metabolismo , Animais , Calcineurina/genética , Calcineurina/metabolismo , Cloretos/metabolismo , Isoenzimas/genética , Fatores de Transcrição MEF2/genética , Fatores de Transcrição MEF2/metabolismo , Camundongos , Fibras Musculares de Contração Rápida/fisiologia , Fibras Musculares de Contração Lenta/fisiologia , Proteína Quinase C/genética , Proteína Quinase C-theta
14.
Arch Cardiovasc Dis ; 117(6-7): 450-456, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38677940

RESUMO

In France, mexiletine - a class I antiarrhythmic drug - can be prescribed for the symptomatic treatment of myotonia of the skeletal muscles in adult patients with myotonic dystrophy under a compassionate use programme. Mexiletine is used according to its summary of product characteristics, which describes its use for myotonia treatment in adult patients with non-dystrophic myotonia, a different neuromuscular condition without cardiac involvement. A cardiac assessment is required prior to initiation and throughout treatment due to potential proarrhythmic effects. The presence of conduction system disease, the most common cardiac manifestation of myotonic dystrophy, mandates repeated cardiac evaluations in patients with this condition, and becomes even more important when they are given mexiletine. A group of experts, including three neurologists and five cardiologists from French neuromuscular reference centres, were involved in a task force to develop a treatment algorithm to guide mexiletine use in myotonic dystrophy. The recommendations are based on data from a literature review of the safety of mexiletine-treated patients with myotonic dystrophy, the compassionate use protocol for mexiletine and the personal clinical experience of the experts. The main conclusion of the expert group is that, although existing safety data in mexiletine-treated patients with myotonic dystrophy are reassuring, cardiac assessments should be reinforced in such patients compared with mexiletine-treated patients with non-dystrophic myotonia. This expert opinion to guide mexiletine treatment in patients with myotonic dystrophy should help to reduce the risk of severe adverse events and facilitate interactions between specialists involved in the routine care of patients with myotonic dystrophy.


Assuntos
Mexiletina , Distrofia Miotônica , Adulto , Humanos , Algoritmos , Antiarrítmicos/uso terapêutico , Antiarrítmicos/efeitos adversos , Arritmias Cardíacas/fisiopatologia , Arritmias Cardíacas/diagnóstico , Arritmias Cardíacas/etiologia , Arritmias Cardíacas/induzido quimicamente , Tomada de Decisão Clínica , Ensaios de Uso Compassivo , Consenso , França , Mexiletina/uso terapêutico , Mexiletina/efeitos adversos , Distrofia Miotônica/tratamento farmacológico , Distrofia Miotônica/diagnóstico , Distrofia Miotônica/fisiopatologia , Medição de Risco , Fatores de Risco , Resultado do Tratamento , Bloqueadores do Canal de Sódio Disparado por Voltagem/uso terapêutico , Bloqueadores do Canal de Sódio Disparado por Voltagem/efeitos adversos
15.
J Neuromuscul Dis ; 11(3): 725-734, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38427496

RESUMO

Background: The nondystrophic myotonias are rare muscle hyperexcitability disorders caused by gain-of-function mutations in the SCN4A gene or loss-of-function mutations in the CLCN1 gene. Clinically, they are characterized by myotonia, defined as delayed muscle relaxation after voluntary contraction, which leads to symptoms of muscle stiffness, pain, fatigue, and weakness. Diagnosis is based on history and examination findings, the presence of electrical myotonia on electromyography, and genetic confirmation. Methods: Next-generation sequencing including the CLCN1 and SCN4A genes was performed in patients with clinical neuromuscular disorders. Electromyography, Short Exercise Test, in vivo and in vitro electrophysiology, site-directed mutagenesis and heterologous expression were collected. Results: A heterozygous point mutation (c.1775C > T, p.Thr592Ile) of muscle voltage-gated sodium channel α subunit gene (SCN4A) has been identified in five female patients over three generations, in a family with non-dystrophic myotonia. The muscle stiffness and myotonia involve mainly the face and hands, but also affect walking and running, appearing early after birth and presenting a clear cold sensitivity. Very hot temperatures, menstruation and pregnancy also exacerbate the symptoms; muscle pain and a warm-up phenomenon are variable features. Neither paralytic attacks nor post-exercise weakness has been reported. Muscle hypertrophy with cramp-like pain and increased stiffness developed during pregnancy. The symptoms were controlled with both mexiletine and acetazolamide. The Short Exercise Test after muscle cooling revealed two different patterns, with moderate absolute changes of compound muscle action potential amplitude. Conclusions: The p.Thr592Ile mutation in the SCN4A gene identified in this Sardinian family was responsible of clinical phenotype of myotonia.


Assuntos
Miotonia , Canal de Sódio Disparado por Voltagem NAV1.4 , Linhagem , Mutação Puntual , Adulto , Feminino , Humanos , Pessoa de Meia-Idade , Eletromiografia , Itália , Miotonia/genética , Miotonia Congênita/genética , Canal de Sódio Disparado por Voltagem NAV1.4/genética
16.
Biomed Pharmacother ; 176: 116877, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38850654

RESUMO

Multiple myeloma (MM) progression is closely dependent on cells in the bone marrow (BM) microenvironment, including fibroblasts (FBs) and immune cells. In their BM niche, MM cells adhere to FBs sustaining immune evasion, drug resistance and the undetectable endurance of tumor cells known as minimal residual disease (MRD). Here, we describe the novel bi-specific designed ankyrin repeat protein (DARPin) α-FAPx4-1BB (MP0310) with FAP-dependent 4-1BB agonistic activity. The α-FAPx4-1BB DARPin simultaneously binds to FAP and 4-1BB overexpressed by activated FBs and immune cells, respectively. Although flow cytometry analysis showed that T and NK cells from MM patients were not activated and did not express 4-1BB, stimulation with daratumumab or elotuzumab, monoclonal antibodies (mAbs) currently used for the treatment of MM, significantly upregulated 4-1BB both in vitro and in MM patients following mAb-based therapy. The mAb-induced 4-1BB overexpression allowed the engagement of α-FAPx4-1BB that acted as a bridge between FAP+FBs and 4-1BB+NK cells. Therefore, α-FAPx4-1BB enhanced both the adhesion of daratumumab-treated NK cells on FBs as well as their activation by improving release of CD107a and perforin, hence MM cell killing via antibody-mediated cell cytotoxicity (ADCC). Interestingly, α-FAPx4-1BB significantly potentiated daratumumab-mediated ADCC in the presence of FBs, suggesting that it may overcome the BM FBs' immunosuppressive effect. Overall, we speculate that treatment with α-FAPx4-1BB may represent a valuable strategy to improve mAb-induced NK cell activity fostering MRD negativity in MM patients through the eradication of latent MRD cells.


Assuntos
Anticorpos Monoclonais Humanizados , Anticorpos Monoclonais , Células Matadoras Naturais , Mieloma Múltiplo , Células Matadoras Naturais/imunologia , Células Matadoras Naturais/efeitos dos fármacos , Células Matadoras Naturais/metabolismo , Mieloma Múltiplo/tratamento farmacológico , Mieloma Múltiplo/imunologia , Mieloma Múltiplo/patologia , Humanos , Anticorpos Monoclonais Humanizados/farmacologia , Anticorpos Monoclonais/farmacologia , Linhagem Celular Tumoral , Membro 9 da Superfamília de Receptores de Fatores de Necrose Tumoral/agonistas , Membro 9 da Superfamília de Receptores de Fatores de Necrose Tumoral/metabolismo , Membro 9 da Superfamília de Receptores de Fatores de Necrose Tumoral/imunologia , Proteínas de Membrana/metabolismo , Proteínas de Membrana/agonistas , Endopeptidases
17.
Biomedicines ; 12(6)2024 Jun 11.
Artigo em Inglês | MEDLINE | ID: mdl-38927500

RESUMO

Arrhythmic risk stratification in patients with Lamin A/C gene (LMNA)-related cardiomyopathy influences clinical decisions. An implantable cardioverter defibrillator (ICD) should be considered in patients with an estimated 5-year risk of malignant ventricular arrhythmia (MVA) of ≥10%. The risk prediction score for MVA includes non-missense LMNA mutations, despite their role as an established risk factor for sudden cardiac death (SCD) has been questioned in several studies. The purpose of this study is to investigate cardiac features and find gene-phenotype correlations that would contribute to the evidence on the prognostic implications of non-missense vs. missense mutations in a cohort of LMNA mutant patients. An observational, prospective study was conducted in which 54 patients positive for a Lamin A/C mutation were enrolled, and 20 probands (37%) were included. The median age at first clinical manifestation was 41 (IQR 19) years. The median follow-up was 8 years (IQR 8). The type of LMNA gene mutation was distributed as follows: missense in 26 patients (48%), non-frameshift insertions in 16 (30%), frameshift deletions in 5 (9%), and nonsense in 7 (13%). Among the missense mutation carriers, two (8%) died and four (15%) were admitted onto the heart transplant list or underwent transplantation, with a major adverse cardiovascular event (MACE) rate of 35%. No statistically significant differences in MACE prevalence were identified according to the missense and non-missense mutation groups (p value = 0.847). Our data shift the spotlight on this considerable topic and could suggest that some missense mutations may deserve attention regarding SCD risk stratification in real-world clinical settings.

18.
NPJ Microgravity ; 10(1): 16, 2024 Feb 10.
Artigo em Inglês | MEDLINE | ID: mdl-38341423

RESUMO

Progress in mechanobiology allowed us to better understand the important role of mechanical forces in the regulation of biological processes. Space research in the field of life sciences clearly showed that gravity plays a crucial role in biological processes. The space environment offers the unique opportunity to carry out experiments without gravity, helping us not only to understand the effects of gravitational alterations on biological systems but also the mechanisms underlying mechanoperception and cell/tissue response to mechanical and gravitational stresses. Despite the progress made so far, for future space exploration programs it is necessary to increase our knowledge on the mechanotransduction processes as well as on the molecular mechanisms underlying microgravity-induced cell and tissue alterations. This white paper reports the suggestions and recommendations of the SciSpacE Science Community for the elaboration of the section of the European Space Agency roadmap "Biology in Space and Analogue Environments" focusing on "How are cells and tissues influenced by gravity and what are the gravity perception mechanisms?" The knowledge gaps that prevent the Science Community from fully answering this question and the activities proposed to fill them are discussed.

19.
NPJ Microgravity ; 10(1): 50, 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38693246

RESUMO

Periodically, the European Space Agency (ESA) updates scientific roadmaps in consultation with the scientific community. The ESA SciSpacE Science Community White Paper (SSCWP) 9, "Biology in Space and Analogue Environments", focusses in 5 main topic areas, aiming to address key community-identified knowledge gaps in Space Biology. Here we present one of the identified topic areas, which is also an unanswered question of life science research in Space: "How to Obtain an Integrated Picture of the Molecular Networks Involved in Adaptation to Microgravity in Different Biological Systems?" The manuscript reports the main gaps of knowledge which have been identified by the community in the above topic area as well as the approach the community indicates to address the gaps not yet bridged. Moreover, the relevance that these research activities might have for the space exploration programs and also for application in industrial and technological fields on Earth is briefly discussed.

20.
Mol Pharmacol ; 83(2): 406-15, 2013 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-23175529

RESUMO

Lubeluzole, which acts on various targets in vitro, including voltage-gated sodium channels, was initially proposed as a neuroprotectant. The lubeluzole structure contains a benzothiazole moiety [N-methyl-1,3-benzothiazole-2-amine (R-like)] related to riluzole and a phenoxy-propranol-amine moiety [(RS)-1-(3,4-difluorophenoxy)-3-(piperidin-1-yl)propan-2-ol (A-core)] recalling propranolol. Both riluzole and propranolol are efficient sodium channel blockers. We studied in detail the effects of lubeluzole (racemic mixture and single isomers), the aforementioned lubeluzole moieties, and riluzole on sodium channels to increase our knowledge of drug-channel molecular interactions. Compounds were tested on hNav1.4 sodium channels, and on F1586C or Y1593C mutants functionally expressed in human embryonic kidney 293 cells, using the patch-clamp technique. Lubeluzole blocked sodium channels with a remarkable effectiveness. No stereoselectivity was found. Compared with mexiletine, the dissociation constant for inactivated channels was ~600 times lower (~11 nM), conferring to lubeluzole a huge use-dependence of great therapeutic value. The F1586C mutation only partially impaired the use-dependent block, suggesting that additional amino acids are critically involved in high-affinity binding. Lubeluzole moieties were modest sodium channel blockers. Riluzole blocked sodium channels efficiently but lacked use dependence, similar to R-like. F1586C fully abolished A-core use dependence, suggesting that A-core binds to the local anesthetic receptor. Thus, lubeluzole likely binds to the local anesthetic receptor through its phenoxy-propranol-amine moiety, with consequent use-dependent behavior. Nevertheless, compared with other known sodium channel blockers, lubeluzole adds a third pharmacophoric point through its benzothiazole moiety, which greatly enhances high-affinity binding and use-dependent block. If sufficient isoform specificity can be attained, the huge use-dependent block may help in the development of new sodium channel inhibitors to provide pharmacotherapy for membrane excitability disorders, such as myotonia, epilepsy, or chronic pain.


Assuntos
Potenciais da Membrana/efeitos dos fármacos , Canal de Sódio Disparado por Voltagem NAV1.4/metabolismo , Fármacos Neuroprotetores/farmacologia , Piperidinas/farmacologia , Bloqueadores dos Canais de Sódio/farmacologia , Tiazóis/farmacologia , Anestésicos Locais/farmacologia , Sítios de Ligação , Linhagem Celular , Células HEK293 , Humanos , Potenciais da Membrana/genética , Proteínas de Membrana/antagonistas & inibidores , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Mutação , Canal de Sódio Disparado por Voltagem NAV1.4/genética , Ligação Proteica , Domínios e Motivos de Interação entre Proteínas , Isoformas de Proteínas , Riluzol/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA