Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 86
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 112(21): E2813-9, 2015 May 26.
Artigo em Inglês | MEDLINE | ID: mdl-25964331

RESUMO

Vibrio species are both ubiquitous and abundant in marine coastal waters, estuaries, ocean sediment, and aquaculture settings worldwide. We report here the isolation, characterization, and genome sequence of a novel Vibrio species, Vibrio antiquarius, isolated from a mesophilic bacterial community associated with hydrothermal vents located along the East Pacific Rise, near the southwest coast of Mexico. Genomic and phenotypic analysis revealed V. antiquarius is closely related to pathogenic Vibrio species, namely Vibrio alginolyticus, Vibrio parahaemolyticus, Vibrio harveyi, and Vibrio vulnificus, but sufficiently divergent to warrant a separate species status. The V. antiquarius genome encodes genes and operons with ecological functions relevant to the environment conditions of the deep sea and also harbors factors known to be involved in human disease caused by freshwater, coastal, and brackish water vibrios. The presence of virulence factors in this deep-sea Vibrio species suggests a far more fundamental role of these factors for their bacterial host. Comparative genomics revealed a variety of genomic events that may have provided an important driving force in V. antiquarius evolution, facilitating response to environmental conditions of the deep sea.


Assuntos
Fontes Hidrotermais/microbiologia , Vibrio/isolamento & purificação , Vibrio/patogenicidade , Evolução Molecular , Genoma Bacteriano , Humanos , Filogenia , RNA Bacteriano/genética , RNA Ribossômico 16S/genética , Água do Mar/microbiologia , Especificidade da Espécie , Vibrio/genética , Virulência/genética
2.
Nature ; 456(7219): 239-44, 2008 Nov 13.
Artigo em Inglês | MEDLINE | ID: mdl-18923393

RESUMO

Diatoms are photosynthetic secondary endosymbionts found throughout marine and freshwater environments, and are believed to be responsible for around one-fifth of the primary productivity on Earth. The genome sequence of the marine centric diatom Thalassiosira pseudonana was recently reported, revealing a wealth of information about diatom biology. Here we report the complete genome sequence of the pennate diatom Phaeodactylum tricornutum and compare it with that of T. pseudonana to clarify evolutionary origins, functional significance and ubiquity of these features throughout diatoms. In spite of the fact that the pennate and centric lineages have only been diverging for 90 million years, their genome structures are dramatically different and a substantial fraction of genes ( approximately 40%) are not shared by these representatives of the two lineages. Analysis of molecular divergence compared with yeasts and metazoans reveals rapid rates of gene diversification in diatoms. Contributing factors include selective gene family expansions, differential losses and gains of genes and introns, and differential mobilization of transposable elements. Most significantly, we document the presence of hundreds of genes from bacteria. More than 300 of these gene transfers are found in both diatoms, attesting to their ancient origins, and many are likely to provide novel possibilities for metabolite management and for perception of environmental signals. These findings go a long way towards explaining the incredible diversity and success of the diatoms in contemporary oceans.


Assuntos
Diatomáceas/genética , Evolução Molecular , Genoma/genética , DNA de Algas/análise , Genes Bacterianos/genética , Dados de Sequência Molecular , Estrutura Terciária de Proteína , Homologia de Sequência de Aminoácidos , Transdução de Sinais
3.
Nature ; 452(7183): 88-92, 2008 Mar 06.
Artigo em Inglês | MEDLINE | ID: mdl-18322534

RESUMO

Mycorrhizal symbioses--the union of roots and soil fungi--are universal in terrestrial ecosystems and may have been fundamental to land colonization by plants. Boreal, temperate and montane forests all depend on ectomycorrhizae. Identification of the primary factors that regulate symbiotic development and metabolic activity will therefore open the door to understanding the role of ectomycorrhizae in plant development and physiology, allowing the full ecological significance of this symbiosis to be explored. Here we report the genome sequence of the ectomycorrhizal basidiomycete Laccaria bicolor (Fig. 1) and highlight gene sets involved in rhizosphere colonization and symbiosis. This 65-megabase genome assembly contains approximately 20,000 predicted protein-encoding genes and a very large number of transposons and repeated sequences. We detected unexpected genomic features, most notably a battery of effector-type small secreted proteins (SSPs) with unknown function, several of which are only expressed in symbiotic tissues. The most highly expressed SSP accumulates in the proliferating hyphae colonizing the host root. The ectomycorrhizae-specific SSPs probably have a decisive role in the establishment of the symbiosis. The unexpected observation that the genome of L. bicolor lacks carbohydrate-active enzymes involved in degradation of plant cell walls, but maintains the ability to degrade non-plant cell wall polysaccharides, reveals the dual saprotrophic and biotrophic lifestyle of the mycorrhizal fungus that enables it to grow within both soil and living plant roots. The predicted gene inventory of the L. bicolor genome, therefore, points to previously unknown mechanisms of symbiosis operating in biotrophic mycorrhizal fungi. The availability of this genome provides an unparalleled opportunity to develop a deeper understanding of the processes by which symbionts interact with plants within their ecosystem to perform vital functions in the carbon and nitrogen cycles that are fundamental to sustainable plant productivity.


Assuntos
Basidiomycota/genética , Basidiomycota/fisiologia , Genoma Fúngico/genética , Micorrizas/genética , Micorrizas/fisiologia , Raízes de Plantas/microbiologia , Simbiose/fisiologia , Abies/microbiologia , Abies/fisiologia , Basidiomycota/enzimologia , Proteínas Fúngicas/classificação , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Regulação da Expressão Gênica , Genes Fúngicos/genética , Hifas/genética , Hifas/metabolismo , Micorrizas/enzimologia , Raízes de Plantas/fisiologia , Simbiose/genética
4.
Nature ; 446(7135): 537-41, 2007 Mar 29.
Artigo em Inglês | MEDLINE | ID: mdl-17344860

RESUMO

Microbes comprise the majority of extant organisms, yet much remains to be learned about the nature and driving forces of microbial diversification. Our understanding of how microorganisms adapt and evolve can be advanced by genome-wide documentation of the patterns of genetic exchange, particularly if analyses target coexisting members of natural communities. Here we use community genomic data sets to identify, with strain specificity, expressed proteins from the dominant member of a genomically uncharacterized, natural, acidophilic biofilm. Proteomics results reveal a genome shaped by recombination involving chromosomal regions of tens to hundreds of kilobases long that are derived from two closely related bacterial populations. Inter-population genetic exchange was confirmed by multilocus sequence typing of isolates and of uncultivated natural consortia. The findings suggest that exchange of large blocks of gene variants is crucial for the adaptation to specific ecological niches within the very acidic, metal-rich environment. Mass-spectrometry-based discrimination of expressed protein products that differ by as little as a single amino acid enables us to distinguish the behaviour of closely related coexisting organisms. This is important, given that microorganisms grouped together as a single species may have quite distinct roles in natural systems and their interactions might be key to ecosystem optimization. Because proteomic data simultaneously convey information about genome type and activity, strain-resolved community proteomics is an important complement to cultivation-independent genomic (metagenomic) analysis of microorganisms in the natural environment.


Assuntos
Bactérias/classificação , Bactérias/genética , Proteínas de Bactérias/química , Proteínas de Bactérias/genética , Genoma Bacteriano/genética , Proteômica , Recombinação Genética/genética , Sequência de Aminoácidos , Bactérias/química , Bactérias/enzimologia , Biofilmes/classificação , Genômica , Dados de Sequência Molecular , Peptídeos/química , Peptídeos/genética , Proteoma/química , Proteoma/genética , Ribulose-Bifosfato Carboxilase/química , Ribulose-Bifosfato Carboxilase/genética
5.
Proc Natl Acad Sci U S A ; 107(49): 21134-9, 2010 Dec 07.
Artigo em Inglês | MEDLINE | ID: mdl-21078967

RESUMO

Whether Vibrio mimicus is a variant of Vibrio cholerae or a separate species has been the subject of taxonomic controversy. A genomic analysis was undertaken to resolve the issue. The genomes of V. mimicus MB451, a clinical isolate, and VM223, an environmental isolate, comprise ca. 4,347,971 and 4,313,453 bp and encode 3,802 and 3,290 ORFs, respectively. As in other vibrios, chromosome I (C-I) predominantly contains genes necessary for growth and viability, whereas chromosome II (C-II) bears genes for adaptation to environmental change. C-I harbors many virulence genes, including some not previously reported in V. mimicus, such as mannose-sensitive hemagglutinin (MSHA), and enterotoxigenic hemolysin (HlyA); C-II encodes a variant of Vibrio pathogenicity island 2 (VPI-2), and Vibrio seventh pandemic island II (VSP-II) cluster of genes. Extensive genomic rearrangement in C-II indicates it is a hot spot for evolution and genesis of speciation for the genus Vibrio. The number of virulence regions discovered in this study (VSP-II, MSHA, HlyA, type IV pilin, PilE, and integron integrase, IntI4) with no notable difference in potential virulence genes between clinical and environmental strains suggests these genes also may play a role in the environment and that pathogenic strains may arise in the environment. Significant genome synteny with prototypic pre-seventh pandemic strains of V. cholerae was observed, and the results of phylogenetic analysis support the hypothesis that, in the course of evolution, V. mimicus and V. cholerae diverged from a common ancestor with a prototypic sixth pandemic genomic backbone.


Assuntos
Genômica/métodos , Vibrio mimicus/genética , Cromossomos Bacterianos , Genes Bacterianos , Especiação Genética , Genoma Bacteriano , Sintenia , Vibrio cholerae/genética
6.
Proc Natl Acad Sci U S A ; 106(36): 15442-7, 2009 Sep 08.
Artigo em Inglês | MEDLINE | ID: mdl-19720995

RESUMO

Vibrio cholerae, the causative agent of cholera, is a bacterium autochthonous to the aquatic environment, and a serious public health threat. V. cholerae serogroup O1 is responsible for the previous two cholera pandemics, in which classical and El Tor biotypes were dominant in the sixth and the current seventh pandemics, respectively. Cholera researchers continually face newly emerging and reemerging pathogenic clones carrying diverse combinations of phenotypic and genotypic properties, which significantly hampered control of the disease. To elucidate evolutionary mechanisms governing genetic diversity of pandemic V. cholerae, we compared the genome sequences of 23 V. cholerae strains isolated from a variety of sources over the past 98 years. The genome-based phylogeny revealed 12 distinct V. cholerae lineages, of which one comprises both O1 classical and El Tor biotypes. All seventh pandemic clones share nearly identical gene content. Using analogy to influenza virology, we define the transition from sixth to seventh pandemic strains as a "shift" between pathogenic clones belonging to the same O1 serogroup, but from significantly different phyletic lineages. In contrast, transition among clones during the present pandemic period is characterized as a "drift" between clones, differentiated mainly by varying composition of laterally transferred genomic islands, resulting in emergence of variants, exemplified by V. cholerae O139 and V. cholerae O1 El Tor hybrid clones. Based on the comparative genomics it is concluded that V. cholerae undergoes extensive genetic recombination via lateral gene transfer, and, therefore, genome assortment, not serogroup, should be used to define pathogenic V. cholerae clones.


Assuntos
Evolução Molecular , Transferência Genética Horizontal/genética , Variação Genética , Filogenia , Vibrio cholerae O1/genética , Sequência de Bases , Toxina da Cólera/genética , Análise por Conglomerados , Ilhas Genômicas/genética , Genômica , Dados de Sequência Molecular , Análise de Sequência de DNA , Especificidade da Espécie
7.
J Bacteriol ; 193(18): 5047-8, 2011 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-21868805

RESUMO

Nitrosomonas sp. strain AL212 is an obligate chemolithotrophic ammonia-oxidizing bacterium (AOB) that was originally isolated in 1997 by Yuichi Suwa and colleagues. This organism belongs to Nitrosomonas cluster 6A, which is characterized by sensitivity to high ammonia concentrations, higher substrate affinity (lower K(m)), and lower maximum growth rates than strains in Nitrosomonas cluster 7, which includes Nitrosomonas europaea and Nitrosomonas eutropha. Genome-informed studies of this ammonia-sensitive cohort of AOB are needed, as these bacteria are found in freshwater environments, drinking water supplies, wastewater treatment systems, and soils worldwide.


Assuntos
DNA Bacteriano/química , DNA Bacteriano/genética , Genoma Bacteriano , Nitrosomonas/genética , Análise de Sequência de DNA , Amônia/metabolismo , Crescimento Quimioautotrófico , Dados de Sequência Molecular , Nitrosomonas/isolamento & purificação , Nitrosomonas/metabolismo , Oxirredução , Plasmídeos
8.
BMC Genomics ; 12: 570, 2011 Nov 23.
Artigo em Inglês | MEDLINE | ID: mdl-22111657

RESUMO

BACKGROUND: Pneumonia and myocarditis are the most commonly reported diseases due to Histophilus somni, an opportunistic pathogen of the reproductive and respiratory tracts of cattle. Thus far only a few genes involved in metabolic and virulence functions have been identified and characterized in H. somni using traditional methods. Analyses of the genome sequences of several Pasteurellaceae species have provided insights into their biology and evolution. In view of the economic and ecological importance of H. somni, the genome sequence of pneumonia strain 2336 has been determined and compared to that of commensal strain 129Pt and other members of the Pasteurellaceae. RESULTS: The chromosome of strain 2336 (2,263,857 bp) contained 1,980 protein coding genes, whereas the chromosome of strain 129Pt (2,007,700 bp) contained only 1,792 protein coding genes. Although the chromosomes of the two strains differ in size, their average GC content, gene density (total number of genes predicted on the chromosome), and percentage of sequence (number of genes) that encodes proteins were similar. The chromosomes of these strains also contained a number of discrete prophage regions and genomic islands. One of the genomic islands in strain 2336 contained genes putatively involved in copper, zinc, and tetracycline resistance. Using the genome sequence data and comparative analyses with other members of the Pasteurellaceae, several H. somni genes that may encode proteins involved in virulence (e.g., filamentous haemaggutinins, adhesins, and polysaccharide biosynthesis/modification enzymes) were identified. The two strains contained a total of 17 ORFs that encode putative glycosyltransferases and some of these ORFs had characteristic simple sequence repeats within them. Most of the genes/loci common to both the strains were located in different regions of the two chromosomes and occurred in opposite orientations, indicating genome rearrangement since their divergence from a common ancestor. CONCLUSIONS: Since the genome of strain 129Pt was ~256,000 bp smaller than that of strain 2336, these genomes provide yet another paradigm for studying evolutionary gene loss and/or gain in regard to virulence repertoire and pathogenic ability. Analyses of the complete genome sequences revealed that bacteriophage- and transposon-mediated horizontal gene transfer had occurred at several loci in the chromosomes of strains 2336 and 129Pt. It appears that these mobile genetic elements have played a major role in creating genomic diversity and phenotypic variability among the two H. somni strains.


Assuntos
Hibridização Genômica Comparativa , Evolução Molecular , Transferência Genética Horizontal , Genes Bacterianos , Pasteurellaceae/genética , Cromossomos Bacterianos , DNA Bacteriano/genética
9.
Appl Environ Microbiol ; 77(5): 1904-6, 2011 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-21183631

RESUMO

We sequenced for the first time the complete neurotoxin gene cluster of a nonproteolytic Clostridium botulinum type F. The neurotoxin gene cluster contained a novel gene arrangement that, compared to other C. botulinum neurotoxin gene clusters, lacked the regulatory botR gene and contained an intergenic is element between its orfX2 and orfX3 genes.


Assuntos
Clostridium botulinum tipo F/genética , Clostridium botulinum/genética , Genes Bacterianos , Família Multigênica , Elementos de DNA Transponíveis , DNA Bacteriano/química , DNA Bacteriano/genética , Dados de Sequência Molecular , Fases de Leitura Aberta , Análise de Sequência de DNA , Fatores de Transcrição/genética
10.
J Bacteriol ; 192(13): 3524-33, 2010 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-20348258

RESUMO

The genomes of Vibrio cholerae O1 Matlab variant MJ-1236, Mozambique O1 El Tor variant B33, and altered O1 El Tor CIRS101 were sequenced. All three strains were found to belong to the phylocore group 1 clade of V. cholerae, which includes the 7th-pandemic O1 El Tor and serogroup O139 isolates, despite displaying certain characteristics of the classical biotype. All three strains were found to harbor a hybrid variant of CTXPhi and an integrative conjugative element (ICE), leading to their establishment as successful clinical clones and the displacement of prototypical O1 El Tor. The absence of strain- and group-specific genomic islands, some of which appear to be prophages and phage-like elements, seems to be the most likely factor in the recent establishment of dominance of V. cholerae CIRS101 over the other two hybrid strains.


Assuntos
Genoma Bacteriano/genética , Vibrio cholerae O1/genética , Vibrio cholerae/genética , Modelos Genéticos
11.
J Bacteriol ; 192(22): 6099-100, 2010 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-20851897

RESUMO

Caldicellulosiruptor obsidiansis OB47(T) (ATCC BAA-2073, JCM 16842) is an extremely thermophilic, anaerobic bacterium capable of hydrolyzing plant-derived polymers through the expression of multidomain/multifunctional hydrolases. The complete genome sequence reveals a diverse set of carbohydrate-active enzymes and provides further insight into lignocellulosic biomass hydrolysis at high temperatures.


Assuntos
DNA Bacteriano/química , DNA Bacteriano/genética , Genoma Bacteriano , Bactérias Gram-Positivas/genética , Anaerobiose , Celulose/metabolismo , Bactérias Gram-Positivas/metabolismo , Temperatura Alta , Hidrolases/genética , Hidrolases/metabolismo , Dados de Sequência Molecular , Análise de Sequência de DNA
12.
BMC Microbiol ; 10: 154, 2010 May 27.
Artigo em Inglês | MEDLINE | ID: mdl-20507608

RESUMO

BACKGROUND: In recent years genome sequencing has been used to characterize new bacterial species, a method of analysis available as a result of improved methodology and reduced cost. Included in a constantly expanding list of Vibrio species are several that have been reclassified as novel members of the Vibrionaceae. The description of two putative new Vibrio species, Vibrio sp. RC341 and Vibrio sp. RC586 for which we propose the names V. metecus and V. parilis, respectively, previously characterized as non-toxigenic environmental variants of V. cholerae is presented in this study. RESULTS: Based on results of whole-genome average nucleotide identity (ANI), average amino acid identity (AAI), rpoB similarity, MLSA, and phylogenetic analysis, the new species are concluded to be phylogenetically closely related to V. cholerae and V. mimicus. Vibrio sp. RC341 and Vibrio sp. RC586 demonstrate features characteristic of V. cholerae and V. mimicus, respectively, on differential and selective media, but their genomes show a 12 to 15% divergence (88 to 85% ANI and 92 to 91% AAI) compared to the sequences of V. cholerae and V. mimicus genomes (ANI <95% and AAI <96% indicative of separate species). Vibrio sp. RC341 and Vibrio sp. RC586 share 2104 ORFs (59%) and 2058 ORFs (56%) with the published core genome of V. cholerae and 2956 (82%) and 3048 ORFs (84%) with V. mimicus MB-451, respectively. The novel species share 2926 ORFs with each other (81% Vibrio sp. RC341 and 81% Vibrio sp. RC586). Virulence-associated factors and genomic islands of V. cholerae and V. mimicus, including VSP-I and II, were found in these environmental Vibrio spp. CONCLUSIONS: Results of this analysis demonstrate these two environmental vibrios, previously characterized as variant V. cholerae strains, are new species which have evolved from ancestral lineages of the V. cholerae and V. mimicus clade. The presence of conserved integration loci for genomic islands as well as evidence of horizontal gene transfer between these two new species, V. cholerae, and V. mimicus suggests genomic islands and virulence factors are transferred between these species.


Assuntos
Genoma Bacteriano , Genômica , Vibrio/classificação , Vibrio/genética , Proteínas de Bactérias/genética , Análise por Conglomerados , RNA Polimerases Dirigidas por DNA/genética , Microbiologia Ambiental , Evolução Molecular , Transferência Genética Horizontal , Ilhas Genômicas , Humanos , Dados de Sequência Molecular , Fases de Leitura Aberta , Filogenia , Análise de Sequência de DNA , Homologia de Sequência de Aminoácidos , Homologia de Sequência do Ácido Nucleico , Sintenia , Vibrio/isolamento & purificação , Fatores de Virulência/genética
13.
J Bacteriol ; 191(11): 3569-79, 2009 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-19346311

RESUMO

The facultative intracellular bacterial pathogen Brucella infects a wide range of warm-blooded land and marine vertebrates and causes brucellosis. Currently, there are nine recognized Brucella species based on host preferences and phenotypic differences. The availability of 10 different genomes consisting of two chromosomes and representing six of the species allowed for a detailed comparison among themselves and relatives in the order Rhizobiales. Phylogenomic analysis of ortholog families shows limited divergence but distinct radiations, producing four clades as follows: Brucella abortus-Brucella melitensis, Brucella suis-Brucella canis, Brucella ovis, and Brucella ceti. In addition, Brucella phylogeny does not appear to reflect the phylogeny of Brucella species' preferred hosts. About 4.6% of protein-coding genes seem to be pseudogenes, which is a relatively large fraction. Only B. suis 1330 appears to have an intact beta-ketoadipate pathway, responsible for utilization of plant-derived compounds. In contrast, this pathway in the other species is highly pseudogenized and consistent with the "domino theory" of gene death. There are distinct shared anomalous regions (SARs) found in both chromosomes as the result of horizontal gene transfer unique to Brucella and not shared with its closest relative Ochrobactrum, a soil bacterium, suggesting their acquisition occurred in spite of a predominantly intracellular lifestyle. In particular, SAR 2-5 appears to have been acquired by Brucella after it became intracellular. The SARs contain many genes, including those involved in O-polysaccharide synthesis and type IV secretion, which if mutated or absent significantly affect the ability of Brucella to survive intracellularly in the infected host.


Assuntos
Brucella/genética , Transferência Genética Horizontal/genética , Genoma Bacteriano/genética , Adipatos/metabolismo , Brucella/classificação , Brucella/fisiologia , Cromossomos Bacterianos/genética , Biologia Computacional , Modelos Genéticos , Filogenia , Pseudogenes/genética , Transdução de Sinais/genética
14.
Appl Environ Microbiol ; 75(7): 2046-56, 2009 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-19201974

RESUMO

The complete genomes of three strains from the phylum Acidobacteria were compared. Phylogenetic analysis placed them as a unique phylum. They share genomic traits with members of the Proteobacteria, the Cyanobacteria, and the Fungi. The three strains appear to be versatile heterotrophs. Genomic and culture traits indicate the use of carbon sources that span simple sugars to more complex substrates such as hemicellulose, cellulose, and chitin. The genomes encode low-specificity major facilitator superfamily transporters and high-affinity ABC transporters for sugars, suggesting that they are best suited to low-nutrient conditions. They appear capable of nitrate and nitrite reduction but not N(2) fixation or denitrification. The genomes contained numerous genes that encode siderophore receptors, but no evidence of siderophore production was found, suggesting that they may obtain iron via interaction with other microorganisms. The presence of cellulose synthesis genes and a large class of novel high-molecular-weight excreted proteins suggests potential traits for desiccation resistance, biofilm formation, and/or contribution to soil structure. Polyketide synthase and macrolide glycosylation genes suggest the production of novel antimicrobial compounds. Genes that encode a variety of novel proteins were also identified. The abundance of acidobacteria in soils worldwide and the breadth of potential carbon use by the sequenced strains suggest significant and previously unrecognized contributions to the terrestrial carbon cycle. Combining our genomic evidence with available culture traits, we postulate that cells of these isolates are long-lived, divide slowly, exhibit slow metabolic rates under low-nutrient conditions, and are well equipped to tolerate fluctuations in soil hydration.


Assuntos
Bactérias/genética , Bactérias/isolamento & purificação , DNA Bacteriano/genética , Genoma Bacteriano , Microbiologia do Solo , Antibacterianos/biossíntese , Transporte Biológico , Metabolismo dos Carboidratos , Cianobactérias/genética , DNA Bacteriano/química , Fungos/genética , Macrolídeos/metabolismo , Dados de Sequência Molecular , Nitrogênio/metabolismo , Filogenia , Proteobactérias/genética , Análise de Sequência de DNA , Homologia de Sequência
15.
Science ; 163(3863): 194-5, 1969 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-5249272

RESUMO

In a study of 41 patients with chronic myelocytic leukemia, two were found to have the 6-phosphogluconate dehydrogenase heterozygous phenotype A-B, and two had the phenotype characteristic of Pd(B) homozygosity. Since one of the two with Pd(B) homozygosity was the mother of two children with the A phenotype, it was presumed that she carried a Pd(A) gene not expressed in her blood cells. his was confirmed by electrophoretic analysis of her fibroblasts, which had the A-B phenotypic pattern. Gene deletion is considered to be the most likely explanation.


Assuntos
Aberrações Cromossômicas/enzimologia , Cromossomos Humanos 21-22 e Y , Heterozigoto , Homozigoto , Leucemia Mieloide/enzimologia , Leucemia Mieloide/genética , Fosfogluconato Desidrogenase/sangue , Alelos , Transtornos Cromossômicos , Citogenética , Eletroforese , Feminino , Fibroblastos/enzimologia , Humanos , Leucócitos/enzimologia , Fenótipo
16.
J Bacteriol ; 189(24): 9044-9, 2007 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-17933898

RESUMO

Burkholderia pseudomallei is the etiologic agent of melioidosis. Many disease manifestations are associated with melioidosis, and the mechanisms causing this variation are unknown; genomic differences among strains offer one explanation. We compared the genome sequences of two strains of B. pseudomallei: the original reference strain K96243 from Thailand and strain MSHR305 from Australia. We identified a variable homologous region between the two strains. This region was previously identified in comparisons of the genome of B. pseudomallei strain K96243 with the genome of strain E264 from the closely related B. thailandensis. In that comparison, K96243 was shown to possess a horizontally acquired Yersinia-like fimbrial (YLF) gene cluster. Here, we show that the homologous genomic region in B. pseudomallei strain 305 is similar to that previously identified in B. thailandensis strain E264. We have named this region in B. pseudomallei strain 305 the B. thailandensis-like flagellum and chemotaxis (BTFC) gene cluster. We screened for these different genomic components across additional genome sequences and 571 B. pseudomallei DNA extracts obtained from regions of endemicity. These alternate genomic states define two distinct groups within B. pseudomallei: all strains contained either the BTFC gene cluster (group BTFC) or the YLF gene cluster (group YLF). These two groups have distinct geographic distributions: group BTFC is dominant in Australia, and group YLF is dominant in Thailand and elsewhere. In addition, clinical isolates are more likely to belong to group YLF, whereas environmental isolates are more likely to belong to group BTFC. These groups should be further characterized in an animal model.


Assuntos
Burkholderia pseudomallei/classificação , Burkholderia pseudomallei/genética , Evolução Molecular , Transferência Genética Horizontal , Austrália/epidemiologia , Burkholderia pseudomallei/isolamento & purificação , Cromossomos Bacterianos/genética , DNA Bacteriano/química , DNA Bacteriano/genética , Microbiologia Ambiental , Genótipo , Humanos , Melioidose/epidemiologia , Melioidose/microbiologia , Epidemiologia Molecular , Dados de Sequência Molecular , Família Multigênica , Análise de Sequência de DNA , Homologia de Sequência , Sintenia , Tailândia/epidemiologia
17.
J Clin Invest ; 50(3): 700-6, 1971 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-5545127

RESUMO

The recent reports of the effect of 2,3-diphosphoglycerate (2,3-DPG) on hemoglobin affinity for oxygen suggested that this substance may play a role in man's adaptation to acidosis and alkalosis.A study of the effect of induced acidosis and alkalosis on the oxyhemoglobin dissociation curve of normal man was therefore carried out, and the mechanisms involved in the physiological regulation of hemoglobin oxygen affinity examined.In acute changes of plasma pH there was no alteration in red cell 2,3-DPG content. However, there were changes in hemoglobin oxygen affinity and these correlated with changes in mean corpuscular hemoglobin concentration (MCHC). With maintained acidosis and alkalosis, red cell 2,3-DPG content was altered and correlated with the changes in hemoglobin oxygen affinity. Both of these mechanisms shift the hemoglobin oxygen dissociation curve opposite to the direct pH (Bohr) effect, and providing the rate of pH change is neither too rapid nor too large, they counteract the direct pH effect and the in vivo hemoglobin oxygen affinity remains unchanged. It is also shown that approximately 35% of the change in hemoglobin oxygen affinity resulting from an alteration in red cell 2,3-DPG, is explained by effect of 2,3-DPG on the red cell pH.


Assuntos
Acidose/sangue , Alcalose/sangue , Artérias , Sangue , Dióxido de Carbono/sangue
18.
J Clin Invest ; 52(11): 2717-24, 1973 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-4748508

RESUMO

Influence of altered blood oxygen affinity on maximal performance ability was evaluated in trained rats exercising to exhaustion in a graded treadmill test. Modification of blood oxygen affinity was achieved both by 2,3-diphosphoglycerate depletion, accomplished by exposure of animals to CO(2) and by exchange transfusion with blood exposed to bisulfite or stored in acid citrate dextrose, and by carbamylation of hemoglobin, produced by exchange transfusion of blood incubated with potassium cyanate. A decrease in oxygen tension at half-saturation of hemoglobin (P(50)) from 36 to 23 mm Hg produced a decrease in resting central venous oxygen pressure of about 12 mm Hg. During exercise it caused an average decrease in work performance of about 10%, which was equivalent to that performance decrement caused by a decrease in hemoglobin concentration of approximately 10%. When superimposed on anemia, this change in blood oxygen affinity again caused a similar decrease in performance over and above that due to anemia alone. A marked rightward shift of the in vivo oxygen dissociation curve during severe exercise may have compensated for the reduced in vitro P(50).


Assuntos
Oxigênio/sangue , Esforço Físico , Trifosfato de Adenosina/sangue , Animais , Preservação de Sangue , Dióxido de Carbono/farmacologia , Pressão Venosa Central , Citratos , Cianatos/farmacologia , Ácidos Difosfoglicéricos/sangue , Eritrócitos/análise , Transfusão Total , Glucose , Hemoglobinas/análise , Heparina/farmacologia , Masculino , Ratos , Sulfitos/farmacologia
19.
Nat Biotechnol ; 22(6): 695-700, 2004 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-15122302

RESUMO

White rot fungi efficiently degrade lignin, a complex aromatic polymer in wood that is among the most abundant natural materials on earth. These fungi use extracellular oxidative enzymes that are also able to transform related aromatic compounds found in explosive contaminants, pesticides and toxic waste. We have sequenced the 30-million base-pair genome of Phanerochaete chrysosporium strain RP78 using a whole genome shotgun approach. The P. chrysosporium genome reveals an impressive array of genes encoding secreted oxidases, peroxidases and hydrolytic enzymes that cooperate in wood decay. Analysis of the genome data will enhance our understanding of lignocellulose degradation, a pivotal process in the global carbon cycle, and provide a framework for further development of bioprocesses for biomass utilization, organopollutant degradation and fiber bleaching. This genome provides a high quality draft sequence of a basidiomycete, a major fungal phylum that includes important plant and animal pathogens.


Assuntos
Celulose/metabolismo , DNA Fúngico/genética , Genoma Fúngico , Lignina/metabolismo , Phanerochaete/genética , Composição de Bases/genética , Biodegradação Ambiental , Classificação , Sistema Enzimático do Citocromo P-450/genética , DNA Fúngico/química , DNA Fúngico/isolamento & purificação , Éxons/genética , Proteínas Fúngicas/classificação , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Biblioteca Gênica , Genes Fúngicos/genética , Genômica , Glicosídeo Hidrolases/genética , Glicosídeo Hidrolases/metabolismo , Glicosiltransferases/genética , Glicosiltransferases/metabolismo , Íntrons/genética , Lacase/genética , Lacase/metabolismo , Oxirredutases/genética , Oxirredutases/metabolismo , Peroxidases/genética , Peroxidases/metabolismo , Phanerochaete/metabolismo , Polissacarídeos/metabolismo , Retroelementos/genética , Análise de Sequência de DNA , Transposases/genética
20.
Genome Announc ; 4(6)2016 Nov 03.
Artigo em Inglês | MEDLINE | ID: mdl-27811105

RESUMO

Alkaliphilus metalliredigens strain QYMF is an anaerobic, alkaliphilic, and metal-reducing bacterium associated with phylum Firmicutes QYMF was isolated from alkaline borax leachate ponds. The genome sequence will help elucidate the role of metal-reducing microorganisms under alkaline environments, a capability that is not commonly observed in metal respiring-microorganisms.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA