Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 91
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Cell ; 185(2): 379-396.e38, 2022 01 20.
Artigo em Inglês | MEDLINE | ID: mdl-35021063

RESUMO

The liver is the largest solid organ in the body, yet it remains incompletely characterized. Here we present a spatial proteogenomic atlas of the healthy and obese human and murine liver combining single-cell CITE-seq, single-nuclei sequencing, spatial transcriptomics, and spatial proteomics. By integrating these multi-omic datasets, we provide validated strategies to reliably discriminate and localize all hepatic cells, including a population of lipid-associated macrophages (LAMs) at the bile ducts. We then align this atlas across seven species, revealing the conserved program of bona fide Kupffer cells and LAMs. We also uncover the respective spatially resolved cellular niches of these macrophages and the microenvironmental circuits driving their unique transcriptomic identities. We demonstrate that LAMs are induced by local lipid exposure, leading to their induction in steatotic regions of the murine and human liver, while Kupffer cell development crucially depends on their cross-talk with hepatic stellate cells via the evolutionarily conserved ALK1-BMP9/10 axis.


Assuntos
Evolução Biológica , Hepatócitos/metabolismo , Macrófagos/metabolismo , Proteogenômica , Animais , Núcleo Celular/metabolismo , Fígado Gorduroso/genética , Fígado Gorduroso/patologia , Homeostase , Humanos , Células de Kupffer/metabolismo , Antígenos Comuns de Leucócito/metabolismo , Lipídeos/química , Fígado/metabolismo , Linfócitos/metabolismo , Camundongos Endogâmicos C57BL , Modelos Biológicos , Células Mieloides/metabolismo , Obesidade/patologia , Proteoma/metabolismo , Transdução de Sinais , Transcriptoma/genética
2.
BMC Vet Res ; 20(1): 358, 2024 Aug 10.
Artigo em Inglês | MEDLINE | ID: mdl-39127648

RESUMO

Lipopolysaccharide (LPS) is one of the most potent mediators of inflammation. In swine husbandry, weaning is associated with LPS-induced intestinal inflammation, resulting in decreased growth rates due to malabsorption of nutrients by the inflamed gut. A potential strategy to treat LPS-mediated disease is administering intestinal alkaline phosphatase (IAP). The latter can detoxify lipid A, the toxic component of LPS, by removal of phosphate groups. Currently, 183 LPS O-serotypes from E. coli have been described, however, comparative experiments to elucidate functional differences between LPS serotypes are scarce. In addition, these functional differences might affect the efficacy of LPS detoxifying enzymes. Here, we evaluated the ability of four LPS serotypes (O26:B6, O55:B5, O111:B4 and O127:B8) derived from Escherichia coli to trigger the secretion of pro-inflammatory cytokines by porcine PBMCs. We also tested the ability of three commercially available IAPs to detoxify these LPS serotypes. The results show that LPS serotypes differ in their ability to trigger cytokine secretion by immune cells, especially at lower concentrations. Moreover, IAPs displayed a different detoxification efficiency of the tested serotypes. Together, this study sheds light on the impact of LPS structure on the detoxification by IAPs. Further research is however needed to elucidate the LPS serotype-specific effects and their implications for the development of novel treatment options to alleviate LPS-induced gut inflammation in weaned piglets.


Assuntos
Fosfatase Alcalina , Escherichia coli , Lipopolissacarídeos , Animais , Fosfatase Alcalina/metabolismo , Lipopolissacarídeos/farmacologia , Suínos , Citocinas/metabolismo , Intestinos/efeitos dos fármacos , Intestinos/enzimologia
3.
Vet Res ; 54(1): 16, 2023 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-36859402

RESUMO

Mycoplasma hyopneumoniae is the primary agent of enzootic pneumonia in pigs. To minimize the economic losses caused by this disease, M. hyopneumoniae vaccination is commonly practiced. However, the persistence of M. hyopneumoniae vaccine-induced immunity, especially the cell-mediated immunity, till the moment of slaughter has not been investigated yet. Therefore, on two commercial farms, 25 pigs (n = 50) received a commercial bacterin intramuscularly at 16 days of age. Each month, the presence of M. hyopneumoniae-specific serum antibodies was analyzed and the proliferation of and TNF-α, IFN-γ and IL-17A production by different T cell subsets in blood was assessed using recall assays. Natural infection with M. hyopneumoniae was assumed in both farms. However, the studied pigs remained M. hyopneumoniae negative for almost the entire trial. Seroconversion was not observed after vaccination and all pigs became seronegative at two months of age. The kinetics of the T cell subset frequencies was similar on both farms. Mycoplasma hyopneumoniae-specific cytokine-producing CD4+CD8+ T cells were found in blood of pigs from both farms at one month of age but decreased significantly with increasing age. On the other hand, T cell proliferation after in vitro M. hyopneumoniae stimulation was observed until the end of the fattening period. Furthermore, differences in humoral and cell-mediated immune responses after M. hyopneumoniae vaccination were not seen between pigs with and without maternally derived antibodies. This study documents the long-term M. hyopneumoniae vaccine-induced immune responses in fattening pigs under field conditions. Further research is warranted to investigate the influence of a natural infection on these responses.


Assuntos
Vacinas Bacterianas , Mycoplasma hyopneumoniae , Pneumonia Suína Micoplasmática , Animais , Vacinas Bacterianas/imunologia , Linfócitos T CD8-Positivos , Ativação Linfocitária , Suínos , Pneumonia Suína Micoplasmática/prevenção & controle , Linfócitos T CD4-Positivos , Citocinas , Anticorpos Antibacterianos
4.
Vet Res ; 53(1): 72, 2022 Sep 13.
Artigo em Inglês | MEDLINE | ID: mdl-36100942

RESUMO

Epithelial cells are known to produce mediators which can influence the behaviour of neighbouring immune cells. Although the oral mucosa has gained increased interest as a route to induce allergy desensitisation and mucosal pathogen immunisation in dogs, there is only limited knowledge on the factors which impact mediator secretion by canine oral epithelial cells. The study's objective was to enlarge the knowledge on the stimuli that can influence the secretion of some pro- and anti-inflammatory cytokines and the chemokine CXCL8 by canine buccal epithelial cells. To investigate this, buccal epithelial cells were isolated from a biopsy of a dog and immortalised by lentiviral transduction of the SV40 large T antigen. The cells were stained with a CD49f and cytokeratin 3 antibody to confirm their epithelial origin. Cells were incubated with allergen extracts, Toll-like receptor ligands (TLRL), recombinant cytokines and vitamin A and D metabolites. Subsequently, the secretion of the cytokines interleukin (IL)-4, IL-6, IL-10, IL-17A, IFN-γ, TGF-ß1 and the chemokine CXCL8 was assayed by ELISA. Immortalised canine buccal epithelial cells stained positive for CD49f but not for cytokeratin 3. The cells produced detectable amounts of CXCL8 and TGF-ß1. A Dermatophagoides farinae extract, an Alternaria alternata extract, Pam3CSK4, heat-killed Listeria monocytogenes, FSL-1, flagellin and canine recombinant IL-17A significantly increased CXCL8 secretion, while the vitamin D metabolite calcitriol significantly suppressed the production of this chemokine. This study showed that certain allergens, TLRL, IL-17A and calcitriol modulate CXCL8 secretion in a cell line of canine buccal epithelial cells.


Assuntos
Interleucina-17 , Interleucina-8 , Alérgenos/metabolismo , Animais , Calcitriol/metabolismo , Citocinas/metabolismo , Cães , Células Epiteliais/metabolismo , Integrina alfa6/metabolismo , Interleucina-8/metabolismo , Queratina-3/metabolismo , Ligantes , Receptores Toll-Like/metabolismo , Fator de Crescimento Transformador beta1/metabolismo
5.
Int J Mol Sci ; 23(12)2022 Jun 13.
Artigo em Inglês | MEDLINE | ID: mdl-35743033

RESUMO

Enterotoxigenic Escherichia coli (ETEC) strains are one of the most common etiological agents of diarrhea in both human and farm animals. In addition to encoding toxins that cause diarrhea, ETEC have evolved numerous strategies to interfere with host defenses. These strategies most likely depend on the sensing of host factors, such as molecules secreted by gut epithelial cells. The present study tested whether the exposure of ETEC to factors secreted by polarized IPEC-J2 cells resulted in transcriptional changes of ETEC-derived virulence factors. Following the addition of host-derived epithelial factors, genes encoding enterotoxins, secretion-system-associated proteins, and the key regulatory molecule cyclic AMP (cAMP) receptor protein (CRP) were substantially modulated, suggesting that ETEC recognize and respond to factors produced by gut epithelial cells. To determine whether these factors were heat sensitive, the IEC-conditioned medium was incubated at 56 °C for 30 min. In most ETEC strains, heat treatment of the IEC-conditioned medium resulted in a loss of transcriptional modulation. Taken together, these data suggest that secreted epithelial factors play a role in bacterial pathogenesis by modulating the transcription of genes encoding key ETEC virulence factors. Further research is warranted to identify these secreted epithelial factors and how ETEC sense these molecules to gain a competitive advantage in the early engagement of the gut epithelium.


Assuntos
Escherichia coli Enterotoxigênica , Infecções por Escherichia coli , Proteínas de Escherichia coli , Animais , Meios de Cultivo Condicionados/metabolismo , Diarreia/microbiologia , Enterotoxinas/metabolismo , Células Epiteliais/metabolismo , Infecções por Escherichia coli/microbiologia , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Suínos , Fatores de Virulência/genética , Fatores de Virulência/metabolismo
6.
Biochem Cell Biol ; 99(1): 61-65, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-32585120

RESUMO

Lactoferrin is a multifunctional protein found in the secretions of mammals. The antimicrobial activity of lactoferrin was the first to be discovered and was assumed to be solely dependent on its iron-chelating ability. However, lactoferrin has been reported to display proteolytic activity towards bacterial virulence factors and to modulate the host defence by stimulating the immune system and balancing pathogen-induced inflammation. Here, we review the current understandings of the antimicrobial effect, interaction with host cells, and innate immune modulation of lactoferrin, and put forward this moonlighting protein as a possible alternative for antibiotics.


Assuntos
Antibacterianos/imunologia , Interações Hospedeiro-Patógeno/imunologia , Imunidade Inata/imunologia , Lactoferrina/imunologia , Animais , Humanos
7.
Vet Res ; 52(1): 67, 2021 May 08.
Artigo em Inglês | MEDLINE | ID: mdl-33964969

RESUMO

Mycoplasma hyopneumoniae (M. hyopneumoniae) is one of the primary agents involved in the porcine respiratory disease complex, economically one of the most important diseases in pigs worldwide. The pathogen adheres to the ciliated epithelium of the trachea, bronchi, and bronchioles, causes damage to the mucosal clearance system, modulates the immune system and renders the animal more susceptible to other respiratory infections. The pathogenesis is very complex and not yet fully understood. Cell-mediated and likely also mucosal humoral responses are considered important for protection, although infected animals are not able to rapidly clear the pathogen from the respiratory tract. Vaccination is frequently practiced worldwide to control M. hyopneumoniae infections and the associated performance losses, animal welfare issues, and treatment costs. Commercial vaccines are mostly bacterins that are administered intramuscularly. However, the commercial vaccines provide only partial protection, they do not prevent infection and have a limited effect on transmission. Therefore, there is a need for novel vaccines that confer a better protection. The present paper gives a short overview of the pathogenesis and immune responses following M. hyopneumoniae infection, outlines the major limitations of the commercial vaccines and reviews the different experimental M. hyopneumoniae vaccines that have been developed and tested in mice and pigs. Most experimental subunit, DNA and vector vaccines are based on the P97 adhesin or other factors that are important for pathogen survival and pathogenesis. Other studies focused on bacterins combined with novel adjuvants. Very few efforts have been directed towards the development of attenuated vaccines, although such vaccines may have great potential. As cell-mediated and likely also humoral mucosal responses are important for protection, new vaccines should aim to target these arms of the immune response. The selection of proper antigens, administration route and type of adjuvant and carrier molecule is essential for success. Also practical aspects, such as cost of the vaccine, ease of production, transport and administration, and possible combination with vaccines against other porcine pathogens, are important. Possible avenues for further research to develop better vaccines and to achieve a more sustainable control of M. hyopneumoniae infections are discussed.


Assuntos
Vacinas Bacterianas/farmacologia , Mycoplasma hyopneumoniae/efeitos dos fármacos , Pneumonia Suína Micoplasmática/prevenção & controle , Vacinação/veterinária , Animais , Pneumonia Suína Micoplasmática/microbiologia , Sus scrofa , Suínos
8.
Vet Res ; 52(1): 96, 2021 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-34193259

RESUMO

Mycoplasma hyopneumoniae is the primary agent of enzootic pneumonia in pigs. Although cell mediated immunity (CMI) may play a role in protection against M. hyopneumoniae, its transfer from sows to their offspring is poorly characterized. Therefore, maternally-derived CMI was studied in piglets from vaccinated and non-vaccinated sows. The potential influence of cross-fostering before colostrum ingestion on the transfer of CMI from dam to piglets was also investigated. Six M. hyopneumoniae vaccinated sows from an endemically infected herd and 47 of their piglets, of which 24 piglets were cross-fostered, were included, as well as three non-vaccinated control sows from an M. hyopneumoniae-free herd and 24 of their piglets. Vaccinated sows received a commercial bacterin intramuscularly at 6 and 3 weeks prior to farrowing. The TNF-α, IFN-γ and IL-17A production by different T-cell subsets in blood of sows, colostrum and blood of piglets was assessed using a recall assay. In blood of sows cytokine producing T-cells were increased upon M. hyopneumoniae vaccination. Similarly, M. hyopneumoniae-specific T-cells were detected in blood of 2-day-old piglets born from these vaccinated sows. In contrast, no M. hyopneumoniae-specific cytokine producing T-cells were found in blood of piglets from control sows. No difference was found in M. hyopneumoniae-specific CMI between cross-fostered and non-cross-fostered piglets. In conclusion, different M. hyopneumoniae-specific T-cell subsets are transferred from the sow to the offspring. Further studies are required to investigate the role of these transferred cells on immune responses in piglets and their potential protective effect against M. hyopneumoniae infections.


Assuntos
Imunidade Celular , Imunidade Materno-Adquirida , Mycoplasma hyopneumoniae/fisiologia , Pneumonia Suína Micoplasmática/imunologia , Animais , Colostro/imunologia , Feminino , Parto , Pneumonia Suína Micoplasmática/virologia , Sus scrofa , Suínos , Vacinação/veterinária
9.
Vet Res ; 52(1): 94, 2021 Jun 26.
Artigo em Inglês | MEDLINE | ID: mdl-34174960

RESUMO

Small intestinal organoids, or enteroids, represent a valuable model to study host-pathogen interactions at the intestinal epithelial surface. Much research has been done on murine and human enteroids, however only a handful studies evaluated the development of enteroids in other species. Porcine enteroid cultures have been described, but little is known about their functional responses to specific pathogens or their associated virulence factors. Here, we report that porcine enteroids respond in a similar manner as in vivo gut tissues to enterotoxins derived from enterotoxigenic Escherichia coli, an enteric pathogen causing postweaning diarrhoea in piglets. Upon enterotoxin stimulation, these enteroids not only display a dysregulated electrolyte and water balance as shown by their swelling, but also secrete inflammation markers. Porcine enteroids grown as a 2D-monolayer supported the adhesion of an F4+ ETEC strain. Hence, these enteroids closely mimic in vivo intestinal epithelial responses to gut pathogens and are a promising model to study host-pathogen interactions in the pig gut. Insights obtained with this model might accelerate the design of veterinary therapeutics aimed at improving gut health.


Assuntos
Escherichia coli Enterotoxigênica/fisiologia , Enterotoxinas/toxicidade , Infecções por Escherichia coli/veterinária , Intestino Delgado/fisiopatologia , Organoides/fisiopatologia , Doenças dos Suínos/fisiopatologia , Animais , Infecções por Escherichia coli/microbiologia , Infecções por Escherichia coli/fisiopatologia , Interações Hospedeiro-Patógeno , Intestino Delgado/microbiologia , Organoides/microbiologia , Sus scrofa , Suínos , Doenças dos Suínos/microbiologia
10.
Appl Environ Microbiol ; 86(24)2020 11 24.
Artigo em Inglês | MEDLINE | ID: mdl-32561576

RESUMO

Enterotoxigenic Escherichia coli (ETEC) strains are important pathogens for humans and farm animals such as pigs. Porcine ETEC strains induce diarrhea through the production of heat-labile enterotoxin (LT) and/or heat-stable enterotoxins (pSTa/STb). Although LT secretion levels differ between porcine ETEC strains, and this has been linked to virulence, it is unclear whether ST secretion levels also differ between porcine ETEC strains. In addition, the molecular mechanism underlying different LT secretion levels has not been elucidated. In this work, multiple porcine ETEC strains were assessed for their capacity to produce and secrete the enterotoxins LT, pSTa, and STb. The strains differed greatly in their capacity to secrete LT, pSTa, and STb. Remarkably, in some strains, periplasmic production did not correlate with their ability to secrete LT, resulting in high periplasmic production and low LT secretion levels. Furthermore, the results indicated that the type II secretion system (T2SS) protein YghG plays a regulatory role in controlling LT secretion levels. These findings highlight YghG as an important mediator of the secretion of the heat-labile enterotoxin LT by porcine ETEC strains and provide better insights into ETEC enterotoxin secretion.IMPORTANCE Enterotoxigenic E. coli strains are a major health concern. Enterotoxins secreted by enterotoxigenic E. coli are crucial for diarrhea induction. Enterotoxin secretion levels differ between strains; however, it is currently unclear what drives these differences. The discrepancy in the production and secretion capacities of enterotoxins in ETEC is important to clarify their function involved in diarrhea induction. Our results further deepen our understanding of how type II secretion system (T2SS) components of ETEC control enterotoxin secretion levels and may lay the foundation for a better understanding of ETEC molecular pathogenesis.


Assuntos
Proteínas da Membrana Bacteriana Externa/genética , Toxinas Bacterianas/metabolismo , Escherichia coli Enterotoxigênica/metabolismo , Enterotoxinas/biossíntese , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Periplasma/microbiologia , Animais , Proteínas da Membrana Bacteriana Externa/metabolismo , Enterotoxinas/metabolismo , Suínos , Doenças dos Suínos/microbiologia
11.
Appl Environ Microbiol ; 86(24)2020 11 24.
Artigo em Inglês | MEDLINE | ID: mdl-32631861

RESUMO

Postweaning diarrhea (PWD) is an economically important, multifactorial disease affecting pigs within the first 2 weeks after weaning. The most common agent associated with PWD is enterotoxigenic Escherichia coli (ETEC). Currently, antibiotics are used to control PWD, and this has most likely contributed to an increased prevalence of antibiotic-resistant strains. This puts pressure on veterinarians and farmers to decrease or even abandon the use of antibiotics, but these measures need to be supported by alternative strategies for controlling these infections. Naturally derived molecules, such as lactoferrin, could be potential candidates due to their antibacterial or immune-modulating activities. Here, we analyzed the ability of bovine lactoferrin (bLF), porcine lactoferrin (pLF), and ovotransferrin (ovoTF) to inhibit ETEC growth, degrade ETEC virulence factors, and inhibit adherence of these pathogens to porcine intestinal epithelial cells. Our results revealed that bLF and pLF, but not ovoTF, inhibit the growth of ETEC. Furthermore, bLF and pLF can degrade several virulence factors produced by ETEC strains, more specifically F4 fimbriae, F18 fimbriae, and flagellin. On the other hand, ovoTF degrades F18 fimbriae and flagellin but not F4 fimbriae. An in vitro adhesion assay showed that bLF, ovoTF, and pLF can decrease the number of bacteria adherent to epithelial cells. Our findings demonstrate that lactoferrin can directly affect porcine ETEC strains, which could allow lactoferrin to serve as an alternative to antimicrobials for the prevention of ETEC infections in piglets.IMPORTANCE Currently, postweaning F4+ and F18+Escherichia coli infections in piglets are controlled by the use of antibiotics and zinc oxide, but the use of these antimicrobial agents most likely contributes to an increase in antibiotic resistance. Our work demonstrates that bovine and porcine lactoferrin can inhibit the growth of porcine enterotoxigenic E. coli strains. In addition, we also show that lactoferrin can reduce the adherence of these strains to small intestinal epithelial cells, even at a concentration that does not inhibit bacterial growth. This research could allow us to develop lactoferrin as an alternative strategy to prevent enterotoxigenic E. coli (ETEC) infections in piglets.


Assuntos
Antibacterianos/farmacologia , Diarreia/veterinária , Escherichia coli Enterotoxigênica/efeitos dos fármacos , Lactoferrina/farmacologia , Doenças dos Suínos/tratamento farmacológico , Fatores de Virulência , Animais , Bovinos , Conalbumina/farmacologia , Diarreia/tratamento farmacológico , Diarreia/microbiologia , Escherichia coli Enterotoxigênica/crescimento & desenvolvimento , Escherichia coli Enterotoxigênica/patogenicidade , Sus scrofa , Suínos , Doenças dos Suínos/microbiologia
12.
Appl Environ Microbiol ; 86(24)2020 11 24.
Artigo em Inglês | MEDLINE | ID: mdl-33008822

RESUMO

The third E. coli and the Mucosal Immune System (ECMIS) meeting was held at Ghent University in Belgium from 2 to 5 June 2019. It brought together an international group of scientists interested in mechanisms of colonization, host response, and vaccine development. ECMIS distinguishes itself from related meetings on these enteropathogens by providing a greater emphasis on animal health and disease and covering a broad range of pathotypes, including enterohemorrhagic, enteropathogenic, enterotoxigenic, enteroaggregative, and extraintestinal pathogenic Escherichia coli As it is well established that the genus Shigella represents a subspecies of E. coli, these organisms along with related enteroinvasive E. coli are also included. In addition, Tannerella forsythia, a periodontal pathogen, was presented as an example of a pathogen which uses its surface glycans for mucosal interaction. This review summarizes several highlights from the 2019 meeting and major advances to our understanding of the biology of these pathogens and their impact on the host.


Assuntos
Infecções por Escherichia coli/imunologia , Escherichia coli/fisiologia , Imunidade nas Mucosas , Infecções por Bactérias Gram-Negativas/imunologia , Tannerella forsythia/fisiologia
13.
Fish Shellfish Immunol ; 102: 307-315, 2020 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-32371255

RESUMO

ß-Glucans have long been used as an immunostimulant in aquaculture. However, the relationship of its structure to its immunomodulatory properties are poorly understood. In this study, the particle size and chemical structure of ß-glucans extracted from wild-type strain of baker's yeast (Saccharomyces cerevisiae) and its null-mutant yeasts Gas1 were characterised. Using Sigma ß-glucan as a reference, the immunomodulatory properties of these polysaccharides in the germ-free Artemia franciscana model system in the presence of Vibrio harveyi bacterial challenge were investigated. The survival of the A. franciscana nauplii, upon challenge with V. harveyi, was significantly higher in all three glucan-treated groups compared to the control. The glucan Gas1 with a lower degree of branching and shorter side chain length had the most prominent V. harveyi-protective effects. The particle size did not affect the nauplii survival when challenged with V. harveyi. Results also showed that the salutary effect of the tested glucans was associated with the upregulation of innate immune genes such as lipopolysaccharide and ß-1,3-glucan-binding protein (lgbp), high mobility group box protein (hmgb), and prophenoloxidase (proPO). Interestingly, the up-regulation of superoxidase dismutase (sod) and glutathione-s-transferase (gst) was only observed in Gas1 treated group, indicating that Gas1 could function to induce higher reactive oxygen species and stronger immunomodulatory function in A. franciscana, and therefore higher survival rate. The expression of heat shock protein 70 (hsp70), peroxinectin (pxn), and down syndrome cell adhesion molecule (dscam) remain unaltered in response to glucan treatment. Taken together, this study provides insights into the structure-function relationship of ß-glucan and the results confirmed that ß-glucan can be an effective immunostimulant in aquaculture, especially the Gas1 glucan.


Assuntos
Adjuvantes Imunológicos/farmacologia , Artemia/imunologia , Expressão Gênica/imunologia , Vida Livre de Germes/imunologia , Imunidade Inata/genética , beta-Glucanas/farmacologia , Adjuvantes Imunológicos/química , Animais , Artemia/efeitos dos fármacos , Expressão Gênica/efeitos dos fármacos , Imunidade Inata/efeitos dos fármacos , Tamanho da Partícula , Vibrio/fisiologia , beta-Glucanas/química
14.
Vet Res ; 50(1): 48, 2019 Jun 20.
Artigo em Inglês | MEDLINE | ID: mdl-31221216

RESUMO

Enterotoxigenic Escherichia coli (ETEC) are an important cause of post-weaning diarrhea (PWD) in piglets. The IL-17 cytokine family is well known to play important roles in the host defense against bacterial infections at the mucosa. Previously, we reported the potential role of IL-17A in clearing an ETEC infection in piglets. IL-17C, another member of the IL-17 family, is highly expressed in the intestinal epithelium, however, its role during an ETEC infection is still unclear. In this study, we demonstrate that F4+ ETEC induce IL-17C mRNA and protein expression in intestinal tissues as well as in porcine intestinal epithelial cells (IPEC-J2). This IL-17C production is largely dependent on TLR5 signaling in IPEC-J2 cells. Both F4+ ETEC infection and exogenous IL-17C increased the expression of antimicrobial peptides and tight junction proteins, such as porcine beta-defensin (pBD)-2, claudin-1, claudin-2 and occludin in IPEC-J2 cells. Taken together, our data demonstrate that TLR5-mediated IL-17C expression in intestinal epithelial cells enhances mucosal host defense responses in a unique autocrine/paracrine manner in the intestinal epithelium against ETEC infection.


Assuntos
Escherichia coli Enterotoxigênica/fisiologia , Infecções por Escherichia coli/veterinária , Interleucina-17/genética , Doenças dos Suínos/genética , Receptor 5 Toll-Like/genética , Animais , Infecções por Escherichia coli/genética , Infecções por Escherichia coli/metabolismo , Infecções por Escherichia coli/microbiologia , Interleucina-17/metabolismo , Mucosa Intestinal/fisiopatologia , Suínos , Doenças dos Suínos/metabolismo , Doenças dos Suínos/microbiologia , Receptor 5 Toll-Like/metabolismo
15.
Vet Res ; 50(1): 91, 2019 Nov 08.
Artigo em Inglês | MEDLINE | ID: mdl-31703726

RESUMO

New vaccine formulations that include novel strains of Mycoplasma hyopneumoniae and innovative adjuvants designed to induce cellular immunity could improve vaccine efficacy against this pathogen. The aim of this experimental study was to assess the efficacy of three experimental bacterin formulations based on M. hyopneumoniae field strain F7.2C which were able to induce cellular immunity. The formulations included a cationic liposome formulation with the Mincle receptor ligand trehalose 6,6-dibehenate (Lipo_DDA:TDB), a squalene-in-water emulsion with Toll-like receptor (TLR) ligands targeting TLR1/2, TLR7/8 and TLR9 (SWE_TLR), and a poly(lactic-co-glycolic acid) micro-particle formulation with the same TLR ligands (PLGA_TLR). Four groups of 12 M. hyopneumoniae-free piglets were primo- (day (D) 0; 39 days of age) and booster vaccinated (D14) intramuscularly with either one of the three experimental bacterin formulations or PBS. The pigs were endotracheally inoculated with a highly and low virulent M. hyopneumoniae strain on D28 and D29, respectively, and euthanized on D56. The main efficacy parameters were: respiratory disease score (RDS; daily), macroscopic lung lesion score (D56) and log copies M. hyopneumoniae DNA determined with qPCR on bronchoalveolar lavage (BAL) fluid (D42, D56). All formulations were able to reduce clinical symptoms, lung lesions and the M. hyopneumoniae DNA load in the lung, with formulation SWE_TLR being the most effective (RDSD28-D56 -61.90%, macroscopic lung lesions -88.38%, M. hyopneumoniae DNA load in BAL fluid (D42) -67.28%). Further experiments raised under field conditions are needed to confirm these results and to assess the effect of the vaccines on performance parameters.


Assuntos
Vacinas Bacterianas/farmacologia , Mycoplasma hyopneumoniae/efeitos dos fármacos , Pneumonia Suína Micoplasmática/prevenção & controle , Animais , Vacinas Bacterianas/administração & dosagem , Vacinas Bacterianas/efeitos adversos , Líquido da Lavagem Broncoalveolar/microbiologia , Pulmão/patologia , Pneumonia Suína Micoplasmática/microbiologia , Suínos
16.
J Virol ; 91(7)2017 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-28122975

RESUMO

Plasmacytoid dendritic cells (pDC) play a central role in the antiviral immune response, both in the innate response and in shaping the adaptive response, mainly because of their ability to produce massive amounts of type I interferon (TI-IFN). Here, we report that cells infected with the live attenuated Bartha vaccine strain of porcine alphaherpesvirus pseudorabies virus (PRV) trigger a dramatically increased TI-IFN response by porcine primary pDC compared to cells infected with wild-type PRV strains (Becker and Kaplan). Since Bartha is one of the relatively few examples of a highly successful alphaherpesvirus vaccine, identification of factors that may contribute to its efficacy may provide insights for the rational design of other alphaherpesvirus vaccines. The Bartha vaccine genome displays several mutations compared to the genome of wild-type PRV strains, including a large deletion in the unique short (US) region, encompassing the glycoprotein E (gE), gI, US9, and US2 genes. Using recombinant PRV Becker strains harboring the entire Bartha US deletion or single mutations in the four affected US genes, we demonstrate that the absence of the viral gE/gI complex contributes to the observed increased IFN-α response. Furthermore, we show that the absence of gE leads to an enhanced extracellular signal-regulated kinase 1/2 (ERK1/2) phosphorylation in pDC, which correlates with a higher TI-IFN production by pDC. In conclusion, the PRV Bartha vaccine strain triggers strongly increased TI-IFN production by porcine pDC. Our data further indicate that the gE/gI glycoprotein complex suppresses TI-IFN production by pDC, which represents the first alphaherpesvirus factor that suppresses pDC activity.IMPORTANCE Several alphaherpesviruses, including herpes simpex virus, still lack effective vaccines. However, the highly successful Bartha vaccine has contributed substantially to eradication of the porcine alphaherpesvirus pseudorabies virus (PRV) in several countries. The impact of Bartha on the immune response is still poorly understood. Type I interferon (TI-IFN)-producing plasmacytoid dendritic cells (pDC) may play an important role in vaccine development. Here, we show that Bartha elicits a dramatically increased type I interferon (TI-IFN) response in primary porcine pDC compared to wild-type strains. In addition, we found that the gE/gI complex, which is absent in Bartha, inhibits the pDC TI-IFN response. This is the first description of an immune cell type that is differentially affected by Bartha versus wild-type PRV and is the first report describing an alphaherpesvirus protein that inhibits the TI-IFN response by pDC. These data may therefore contribute to the rational design of other alphaherpesvirus vaccines.


Assuntos
Células Dendríticas/metabolismo , Interferon Tipo I/biossíntese , Pseudorraiva/imunologia , Proteínas do Envelope Viral/fisiologia , Animais , Células Cultivadas , Células Dendríticas/imunologia , Células Dendríticas/virologia , Evasão da Resposta Imune , Imunidade Inata , Imunomodulação , Sistema de Sinalização das MAP Quinases , Pseudorraiva/virologia , Sus scrofa
17.
Mol Pharm ; 15(2): 377-384, 2018 02 05.
Artigo em Inglês | MEDLINE | ID: mdl-29297692

RESUMO

Synthetic mRNA is becoming increasingly popular as an alternative to pDNA-based gene therapy. Currently, multiple synthetic mRNA platforms have been developed. In this study we investigated the expression kinetics and the changes in mRNA encoding cytokine and chemokine levels following intradermal electroporation in pigs of pDNA, self-replicating mRNA, and modified and unmodified mRNA. The self-replicating mRNA tended to induce the highest protein expression, followed by pDNA, modified mRNA, and unmodified mRNA. Interestingly, the self-replicating mRNA was able to maintain its high expression levels during at least 12 days. In contrast, the expression of pDNA and the nonreplicating mRNAs dropped after respectively one and two days. Six days after intradermal electroporation a dose-dependent expression was observed for all vectors. Again, also at lower doses, the self-replicating mRNA tended to show the highest expression. All the mRNA vectors, including the modified mRNA, induced elevated levels of mRNA encoding cytokines and chemokines in the porcine skin after intradermal electroporation, while no such response was noticed after intradermal electroporation of the pDNA vector.


Assuntos
DNA Circular/administração & dosagem , Técnicas de Transferência de Genes , Imunidade/genética , RNA Mensageiro/administração & dosagem , Animais , Quimiocinas/imunologia , Quimiocinas/metabolismo , Citocinas/imunologia , Citocinas/metabolismo , DNA Circular/genética , DNA Circular/metabolismo , Eletroporação/métodos , Feminino , Terapia Genética/métodos , Vetores Genéticos/genética , Cinética , Camundongos Endogâmicos BALB C , Modelos Animais , Plasmídeos/administração & dosagem , Plasmídeos/genética , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Pele/metabolismo , Sus scrofa
18.
Vet Res ; 49(1): 67, 2018 07 18.
Artigo em Inglês | MEDLINE | ID: mdl-30021620

RESUMO

Cellular entry mediators define whether the cell is permissive to PRRSV infection. Porcine sialoadhesin (pSn, Siglec-1) and CD163 are main entry mediators facilitating infection of porcine macrophages by PRRSV. Recently, Siglec-10 was demonstrated to be an alternative receptor for PRRSV. To examine if virulence and pathogenicity of PRRSV strains could be correlated with the use of different Siglecs, a PK15 cell line recombinantly expressing Siglec-1 and CD163 (PK15S1-CD163) and a PK15 cell line recombinantly expressing Siglec-10 and CD163 (PK15S10-CD163) were used to compare the virus replication of 7 genotype 1 subtype 1 strains (G1s1), 2 genotype 1 subtype 3 (G1s3) strains and 5 genotype 2 (G2) strains. Some strains (08VA (G1s1), 13V117 (G1s1), 17V035 (G1s1), VR2332 (G2)) were poor virus producers (<104 TCID50/mL), while other strains (07V063 (G1s1), 13V091 (G1s1), Su1-Bel (G1s3), MN-184 (G2), Korea17 (G2) and SDSU-73 (G2)) easily grew up to ≥106 TCID50/mL. PK15S10-CD163 cells exhibited a higher efficiency in virus production per infected cell than the PK15S1-CD163 cells. The G1s1 strains LV and 07V063 infected more cells in the PK15S1-CD163, whereas the 94V360 and 08VA strains preferred PK15S10-CD163. The highly virulent G1s3 strains Lena and Su1-Bel showed a strong preference for PK15S1-CD163. The G2 strains MN-184, SDSU-73, Korea17 had a much higher infection rate in PK15S10-CD163, while the reference strain VR2332 and the NADC30 strain had a slight preference for PK15S1-CD163. Differences in receptor use may influence the outcome of a PRRSV infection in pigs and explain in part the virulence/pathogenicity of PRRSV strains.


Assuntos
Vírus da Síndrome Respiratória e Reprodutiva Suína/fisiologia , Lectinas Semelhantes a Imunoglobulina de Ligação ao Ácido Siálico/fisiologia , Animais , Linhagem Celular , Síndrome Respiratória e Reprodutiva Suína , Vírus da Síndrome Respiratória e Reprodutiva Suína/genética , Lectina 1 Semelhante a Ig de Ligação ao Ácido Siálico/fisiologia , Suínos
19.
Vet Res ; 49(1): 64, 2018 07 31.
Artigo em Inglês | MEDLINE | ID: mdl-30060757

RESUMO

Vaccines and other alternative products can help minimize the need for antibiotics by preventing and controlling infectious diseases in animal populations, and are central to the future success of animal agriculture. To assess scientific advancements related to alternatives to antibiotics and provide actionable strategies to support their development, the United States Department of Agriculture, with support from the World Organisation for Animal Health, organized the second International Symposium on Alternatives to Antibiotics. It focused on six key areas: vaccines; microbial-derived products; non-nutritive phytochemicals; immune-related products; chemicals, enzymes, and innovative drugs; and regulatory pathways to enable the development and licensure of alternatives to antibiotics. This article, part of a two-part series, synthesizes and expands on the expert panel discussions regarding opportunities, challenges and needs for the development of vaccines that may reduce the need for use of antibiotics in animals; new approaches and potential solutions will be discussed in part 2 of this series. Vaccines are widely used to prevent infections in food animals. Various studies have demonstrated that their animal agricultural use can lead to significant reductions in antibiotic consumption, making them promising alternatives to antibiotics. To be widely used in food producing animals, vaccines have to be safe, effective, easy to use, and cost-effective. Many current vaccines fall short in one or more of these respects. Scientific advancements may allow many of these limitations to be overcome, but progress is funding-dependent. Research will have to be prioritized to ensure scarce public resources are dedicated to areas of potentially greatest impact first, and private investments into vaccine development constantly compete with other investment opportunities. Although vaccines have the potential to improve animal health, safeguard agricultural productivity, and reduce antibiotic consumption and resulting resistance risks, targeted research and development investments and concerted efforts by all affected are needed to realize that potential.


Assuntos
Gado/imunologia , Vacinas/uso terapêutico , Animais , Antibacterianos/uso terapêutico , Estados Unidos
20.
Vet Res ; 49(1): 70, 2018 07 31.
Artigo em Inglês | MEDLINE | ID: mdl-30060759

RESUMO

Vaccines and other alternative products are central to the future success of animal agriculture because they can help minimize the need for antibiotics by preventing and controlling infectious diseases in animal populations. To assess scientific advancements related to alternatives to antibiotics and provide actionable strategies to support their development, the United States Department of Agriculture, with support from the World Organisation for Animal Health, organized the second International Symposium on Alternatives to Antibiotics. It focused on six key areas: vaccines; microbial-derived products; non-nutritive phytochemicals; immune-related products; chemicals, enzymes, and innovative drugs; and regulatory pathways to enable the development and licensure of alternatives to antibiotics. This article, the second part in a two-part series, highlights new approaches and potential solutions for the development of vaccines as alternatives to antibiotics in food producing animals; opportunities, challenges and needs for the development of such vaccines are discussed in the first part of this series. As discussed in part 1 of this manuscript, many current vaccines fall short of ideal vaccines in one or more respects. Promising breakthroughs to overcome these limitations include new biotechnology techniques, new oral vaccine approaches, novel adjuvants, new delivery strategies based on bacterial spores, and live recombinant vectors; they also include new vaccination strategies in-ovo, and strategies that simultaneously protect against multiple pathogens. However, translating this research into commercial vaccines that effectively reduce the need for antibiotics will require close collaboration among stakeholders, for instance through public-private partnerships. Targeted research and development investments and concerted efforts by all affected are needed to realize the potential of vaccines to improve animal health, safeguard agricultural productivity, and reduce antibiotic consumption and resulting resistance risks.


Assuntos
Gado/imunologia , Vacinas/uso terapêutico , Criação de Animais Domésticos , Animais , Antibacterianos/uso terapêutico , Estados Unidos , Vacinação/métodos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA