Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Assunto da revista
País de afiliação
Intervalo de ano de publicação
1.
Science ; 287(5461): 2196-204, 2000 Mar 24.
Artigo em Inglês | MEDLINE | ID: mdl-10731133

RESUMO

We report on the quality of a whole-genome assembly of Drosophila melanogaster and the nature of the computer algorithms that accomplished it. Three independent external data sources essentially agree with and support the assembly's sequence and ordering of contigs across the euchromatic portion of the genome. In addition, there are isolated contigs that we believe represent nonrepetitive pockets within the heterochromatin of the centromeres. Comparison with a previously sequenced 2.9- megabase region indicates that sequencing accuracy within nonrepetitive segments is greater than 99. 99% without manual curation. As such, this initial reconstruction of the Drosophila sequence should be of substantial value to the scientific community.


Assuntos
Biologia Computacional , Drosophila melanogaster/genética , Genoma , Análise de Sequência de DNA , Algoritmos , Animais , Cromatina/genética , Mapeamento de Sequências Contíguas , Eucromatina , Genes de Insetos , Heterocromatina/genética , Dados de Sequência Molecular , Mapeamento Físico do Cromossomo , Sequências Repetitivas de Ácido Nucleico , Sitios de Sequências Rotuladas
2.
Science ; 291(5507): 1304-51, 2001 02 16.
Artigo em Inglês | MEDLINE | ID: mdl-11181995

RESUMO

A 2.91-billion base pair (bp) consensus sequence of the euchromatic portion of the human genome was generated by the whole-genome shotgun sequencing method. The 14.8-billion bp DNA sequence was generated over 9 months from 27,271,853 high-quality sequence reads (5.11-fold coverage of the genome) from both ends of plasmid clones made from the DNA of five individuals. Two assembly strategies-a whole-genome assembly and a regional chromosome assembly-were used, each combining sequence data from Celera and the publicly funded genome effort. The public data were shredded into 550-bp segments to create a 2.9-fold coverage of those genome regions that had been sequenced, without including biases inherent in the cloning and assembly procedure used by the publicly funded group. This brought the effective coverage in the assemblies to eightfold, reducing the number and size of gaps in the final assembly over what would be obtained with 5.11-fold coverage. The two assembly strategies yielded very similar results that largely agree with independent mapping data. The assemblies effectively cover the euchromatic regions of the human chromosomes. More than 90% of the genome is in scaffold assemblies of 100,000 bp or more, and 25% of the genome is in scaffolds of 10 million bp or larger. Analysis of the genome sequence revealed 26,588 protein-encoding transcripts for which there was strong corroborating evidence and an additional approximately 12,000 computationally derived genes with mouse matches or other weak supporting evidence. Although gene-dense clusters are obvious, almost half the genes are dispersed in low G+C sequence separated by large tracts of apparently noncoding sequence. Only 1.1% of the genome is spanned by exons, whereas 24% is in introns, with 75% of the genome being intergenic DNA. Duplications of segmental blocks, ranging in size up to chromosomal lengths, are abundant throughout the genome and reveal a complex evolutionary history. Comparative genomic analysis indicates vertebrate expansions of genes associated with neuronal function, with tissue-specific developmental regulation, and with the hemostasis and immune systems. DNA sequence comparisons between the consensus sequence and publicly funded genome data provided locations of 2.1 million single-nucleotide polymorphisms (SNPs). A random pair of human haploid genomes differed at a rate of 1 bp per 1250 on average, but there was marked heterogeneity in the level of polymorphism across the genome. Less than 1% of all SNPs resulted in variation in proteins, but the task of determining which SNPs have functional consequences remains an open challenge.


Assuntos
Genoma Humano , Projeto Genoma Humano , Análise de Sequência de DNA , Algoritmos , Animais , Bandeamento Cromossômico , Mapeamento Cromossômico , Cromossomos Artificiais Bacterianos , Biologia Computacional , Sequência Consenso , Ilhas de CpG , DNA Intergênico , Bases de Dados Factuais , Evolução Molecular , Éxons , Feminino , Duplicação Gênica , Genes , Variação Genética , Humanos , Íntrons , Masculino , Fenótipo , Mapeamento Físico do Cromossomo , Polimorfismo de Nucleotídeo Único , Proteínas/genética , Proteínas/fisiologia , Pseudogenes , Sequências Repetitivas de Ácido Nucleico , Retroelementos , Análise de Sequência de DNA/métodos , Especificidade da Espécie
3.
Bioinformatics ; 17 Suppl 1: S132-9, 2001.
Artigo em Inglês | MEDLINE | ID: mdl-11473002

RESUMO

Two different strategies for determining the human genome are currently being pursued: one is the "clone-by-clone" approach, employed by the publicly funded project, and the other is the "whole genome shotgun assembler" approach, favored by researchers at Celera Genomics. An interim strategy employed at Celera, called compartmentalized shotgun assembly, makes use of preliminary data produced by both approaches. In this paper we describe the design, implementation and operation of the "compartmentalized shotgun assembler".


Assuntos
Clonagem Molecular/métodos , Genoma Humano , Cromossomos Artificiais Bacterianos/genética , Biologia Computacional , Bases de Dados de Ácidos Nucleicos , Humanos , Análise de Sequência de DNA/estatística & dados numéricos , Software
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA