Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Sci Total Environ ; 905: 167046, 2023 Dec 20.
Artigo em Inglês | MEDLINE | ID: mdl-37714355

RESUMO

Studying historical response of crops to weather conditions at a finer scale is essential for devising agricultural strategies tailored to expected climate changes. However, determining the relationship between crop and climate in Mississippi (MS) remains elusive. Therefore, this research attempted to i) estimate climate trends between 1970 and 2020 in MS during the soybean growing season (SGS) using the Mann-Kendall and Sen slope method, ii) calculate the impact of climate change on soybean yield using an auto-regressive distributive lag (ARDL) econometric model, and iii) identify the most critical months from a crop-climate perspective by generating a correlation between the detrended yield and the monthly average for each climatic variable. Specific variables considered were maximum temperature (Tmax), minimum temperature (Tmin), diurnal temperature range (DTR), precipitation (PT), carbon dioxide emissions (CO2), and relative humidity (RH). All required diagnostic-tests i.e., pre-analysis, post-analysis, model-sensitivity, and assessing the models' goodness-of-fit were performed and statistical standards were met. A positive trend in Tmin (+0.25 °C/decade), and a negative trend in DTR (-0.18 °C/decade) was found. Although Tmax, PT, and RH showed non-significant trends, numerical changes were noted as +0.11 °C/decade, +3.03 mm/decade, and -0.06 %/decade, respectively. Furthermore, soybean yield was positively correlated with Tmin (in June and September), PT (in July and August), and RH (in July), but negatively correlated with Tmax (in July and August) and DTR (in June, July, and August). Soybean yield was observed to be significantly reduced by 18.11 % over the long-term and by 5.51 % over the short-term for every 1 °C increase in Tmax. With every unit increase in Tmin and CO2 emissions, the yield of soybeans increased significantly by 7.76 % and 3.04 %, respectively. Altogether, soybeans in MS exhibited variable sensitivity to short- and long-terms climatic changes. The results highlight the importance of testing climate-resilient agronomic practices and cultivars that encompass asymmetric sensitivities in response to climatic conditions of MS.


Assuntos
Dióxido de Carbono , Glycine max , Mississippi , Tempo (Meteorologia) , Produtos Agrícolas , Temperatura , Mudança Climática
2.
Sci Rep ; 13(1): 16641, 2023 10 03.
Artigo em Inglês | MEDLINE | ID: mdl-37789065

RESUMO

Climate change poses a significant threat to agriculture. However, climatic trends and their impact on Mississippi (MS) maize (Zea mays L.) are unknown. The objectives were to: (i) analyze trends in climatic variables (1970 to 2020) using Mann-Kendall and Sen slope method, (ii) quantify the impact of climate change on maize yield in short and long run using the auto-regressive distributive lag (ARDL) model, and (iii) categorize the critical months for maize-climate link using Pearson's correlation matrix. The climatic variables considered were maximum temperature (Tmax), minimum temperature (Tmin), diurnal temperature range (DTR), precipitation (PT), relative humidity (RH), and carbon emissions (CO2). The pre-analysis, post-analysis, and model robustness statistical tests were verified, and all conditions were met. A significant upward trend in Tmax (0.13 °C/decade), Tmin (0.27 °C/decade), and CO2 (5.1 units/decade), and a downward trend in DTR ( - 0.15 °C/decade) were noted. The PT and RH insignificantly increased by 4.32 mm and 0.11% per decade, respectively. The ARDL model explained 76.6% of the total variations in maize yield. Notably, the maize yield had a negative correlation with Tmax for June, and July, with PT in August, and with DTR for June, July, and August, whereas a positive correlation was noted with Tmin in June, July, and August. Overall, a unit change in Tmax reduced the maize yield by 7.39% and 26.33%, and a unit change in PT reduced it by 0.65% and 2.69% in the short and long run, respectively. However, a unit change in Tmin, and CO2 emissions increased maize yield by 20.68% and 0.63% in the long run with no short run effect. Overall, it is imperative to reassess the agronomic management strategies, developing and testing cultivars adaptable to the revealed climatic trend, with ability to withstand severe weather conditions in ensuring sustainable maize production.


Assuntos
Dióxido de Carbono , Zea mays , Dióxido de Carbono/análise , Mississippi , Tempo (Meteorologia) , Agricultura/métodos , Mudança Climática
3.
Sci Rep ; 12(1): 16928, 2022 10 08.
Artigo em Inglês | MEDLINE | ID: mdl-36209318

RESUMO

Climate change and its impact on agriculture productivity vary among crops and regions. The southeastern United States (SE-US) is agro-ecologically diversified, economically dependent on agriculture, and mostly overlooked by agroclimatic researchers. The objective of this study was to compute the effect of climatic variables; daily maximum temperature (Tmax), daily minimum temperature (Tmin), and rainfall on the yield of major cereal crops i.e., corn (Zea mays L.), rice (Oryza sativa L.), and wheat (Triticum aestivum L.) in SE-US. A fixed-effect model (panel data approach) was used by applying the production function on panel data from 1980 to 2020 from 11 SE-US states. An asymmetrical warming pattern was observed, where nocturnal warming was 105.90%, 106.30%, and 32.14%, higher than the diurnal warming during corn, rice, and wheat growing seasons, respectively. Additionally, a shift in rainfall was noticed ranging from 19.2 to 37.2 mm over different growing seasons. Rainfall significantly reduced wheat yield, while, it had no effect on corn and rice yields. The Tmax and Tmin had no significant effect on wheat yield. A 1 °C rise in Tmax significantly decreased corn (- 34%) and rice (- 8.30%) yield which was offset by a 1 °C increase in Tmin increasing corn (47%) and rice (22.40%) yield. Conclusively, overall temperature change of 1 °C in the SE-US significantly improved corn yield by 13%, rice yield by 14.10%, and had no effect on wheat yield.


Assuntos
Oryza , Triticum , Agricultura , Mudança Climática , Produtos Agrícolas , Temperatura , Zea mays
4.
Sci Rep ; 10(1): 11479, 2020 07 10.
Artigo em Inglês | MEDLINE | ID: mdl-32651438

RESUMO

The environment randomly influences nitrogen (N) response, demand, and optimum N rates. Field experiments were conducted at Lake Carl Blackwell (LCB) and Efaw Agronomy Research Station (Efaw) from 2015 to 2018 in Oklahoma, USA. Fourteen site years of data were used from two different trials, namely Regional Corn (Regional) and Optimum N rate (Optimum N). Three algorithms developed by Oklahoma State University (OSU) to predict yield potential were tested on both trials. Furthermore, three new models for predicting potential yield using optical crop sensors and climatological data were developed for maize in rain-fed conditions. The models were trained/built using Regional and were then validated/tested on the Optimum N trial. Out of three models, one model was developed using all of the Regional trial (combined model), and the other two were prepared from each location LCB and Efaw model. Of the three current algorithms; one worked best at predicting final grain yield at LCB location only. The coefficient of determination R2 = 0.15 and 0.16 between actual grain yield and predicted grain yield was observed for Regional and Optimum N rate trials, respectively. The results further indicated that the new models were better at predicting final grain yield except for Efaw model (R2 = 0.04) when tested on optimum N trial. Grain yield prediction for the combined model had an R2 = 0.31. The best yield prediction was obtained at LCB with an R2 = 0.52. Including climatological data significantly improved the ability to predict final grain yield along with using mid-season sensor data.


Assuntos
Agricultura/tendências , Produtos Agrícolas/crescimento & desenvolvimento , Tecnologia de Sensoriamento Remoto , Zea mays/crescimento & desenvolvimento , Grão Comestível/crescimento & desenvolvimento , Fertilizantes , Humanos , Meteorologia , Chuva , Estações do Ano
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA