Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 220
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Cell ; 175(1): 266-276.e13, 2018 09 20.
Artigo em Inglês | MEDLINE | ID: mdl-30166209

RESUMO

A fundamental challenge of biology is to understand the vast heterogeneity of cells, particularly how cellular composition, structure, and morphology are linked to cellular physiology. Unfortunately, conventional technologies are limited in uncovering these relations. We present a machine-intelligence technology based on a radically different architecture that realizes real-time image-based intelligent cell sorting at an unprecedented rate. This technology, which we refer to as intelligent image-activated cell sorting, integrates high-throughput cell microscopy, focusing, and sorting on a hybrid software-hardware data-management infrastructure, enabling real-time automated operation for data acquisition, data processing, decision-making, and actuation. We use it to demonstrate real-time sorting of microalgal and blood cells based on intracellular protein localization and cell-cell interaction from large heterogeneous populations for studying photosynthesis and atherothrombosis, respectively. The technology is highly versatile and expected to enable machine-based scientific discovery in biological, pharmaceutical, and medical sciences.


Assuntos
Citometria de Fluxo/métodos , Ensaios de Triagem em Larga Escala/métodos , Processamento de Imagem Assistida por Computador/métodos , Animais , Aprendizado Profundo , Humanos
2.
Nature ; 611(7936): 570-577, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-36352231

RESUMO

Expanding our global testing capacity is critical to preventing and containing pandemics1-9. Accordingly, accessible and adaptable automated platforms that in decentralized settings perform nucleic acid amplification tests resource-efficiently are required10-14. Pooled testing can be extremely efficient if the pooling strategy is based on local viral prevalence15-20; however, it requires automation, small sample volume handling and feedback not available in current bulky, capital-intensive liquid handling technologies21-29. Here we use a swarm of millimetre-sized magnets as mobile robotic agents ('ferrobots') for precise and robust handling of magnetized sample droplets and high-fidelity delivery of flexible workflows based on nucleic acid amplification tests to overcome these limitations. Within a palm-sized printed circuit board-based programmable platform, we demonstrated the myriad of laboratory-equivalent operations involved in pooled testing. These operations were guided by an introduced square matrix pooled testing algorithm to identify the samples from infected patients, while maximizing the testing efficiency. We applied this automated technology for the loop-mediated isothermal amplification and detection of the SARS-CoV-2 virus in clinical samples, in which the test results completely matched those obtained off-chip. This technology is easily manufacturable and distributable, and its adoption for viral testing could lead to a 10-300-fold reduction in reagent costs (depending on the viral prevalence) and three orders of magnitude reduction in instrumentation cost. Therefore, it is a promising solution to expand our testing capacity for pandemic preparedness and to reimagine the automated clinical laboratory of the future.


Assuntos
Automação , Teste para COVID-19 , Imãs , Técnicas de Diagnóstico Molecular , Técnicas de Amplificação de Ácido Nucleico , Robótica , SARS-CoV-2 , Humanos , COVID-19/diagnóstico , COVID-19/virologia , Teste para COVID-19/métodos , Técnicas de Diagnóstico Molecular/economia , Técnicas de Diagnóstico Molecular/métodos , Técnicas de Amplificação de Ácido Nucleico/economia , Técnicas de Amplificação de Ácido Nucleico/métodos , Pandemias/prevenção & controle , RNA Viral/análise , RNA Viral/genética , SARS-CoV-2/genética , SARS-CoV-2/isolamento & purificação , Sensibilidade e Especificidade , Algoritmos , Automação/economia , Automação/métodos , Robótica/métodos , Indicadores e Reagentes/economia
3.
Proc Natl Acad Sci U S A ; 121(14): e2320442121, 2024 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-38536748

RESUMO

The ability to selectively bind to antigenic peptides and secrete effector molecules can define rare and low-affinity populations of cells with therapeutic potential in emerging T cell receptor (TCR) immunotherapies. We leverage cavity-containing hydrogel microparticles, called nanovials, each coated with peptide-major histocompatibility complex (pMHC) monomers to isolate antigen-reactive T cells. T cells are captured and activated by pMHCs inducing the secretion of effector molecules including IFN-γ and granzyme B that are accumulated on nanovials, allowing sorting based on both binding and function. The TCRs of sorted cells on nanovials are sequenced, recovering paired αß-chains using microfluidic emulsion-based single-cell sequencing. By labeling nanovials having different pMHCs with unique oligonucleotide-barcodes and secretions with oligo-barcoded detection antibodies, we could accurately link TCR sequences to specific targets and rank each TCR based on the corresponding cell's secretion level. Using the technique, we identified an expanded repertoire of functional TCRs targeting viral antigens with high specificity and found rare TCRs with activity against cancer-specific splicing-enhanced epitopes.


Assuntos
Receptores de Antígenos de Linfócitos T , Linfócitos T , Peptídeos/química , Antígenos de Histocompatibilidade/química , Antígenos
4.
Proc Natl Acad Sci U S A ; 120(49): e2306467120, 2023 Dec 05.
Artigo em Inglês | MEDLINE | ID: mdl-38039270

RESUMO

Liquid-liquid phase separation is key to understanding aqueous two-phase systems (ATPS) arising throughout cell biology, medical science, and the pharmaceutical industry. Controlling the detailed morphology of phase-separating compound droplets leads to new technologies for efficient single-cell analysis, targeted drug delivery, and effective cell scaffolds for wound healing. We present a computational model of liquid-liquid phase separation relevant to recent laboratory experiments with gelatin-polyethylene glycol mixtures. We include buoyancy and surface-tension-driven finite viscosity fluid dynamics with thermally induced phase separation. We show that the fluid dynamics greatly alters the evolution and equilibria of the phase separation problem. Notably, buoyancy plays a critical role in driving the ATPS to energy-minimizing crescent-shaped morphologies, and shear flows can generate a tenfold speedup in particle formation. Neglecting fluid dynamics produces incorrect minimum-energy droplet shapes. The model allows for optimization of current manufacturing procedures for structured microparticles and improves understanding of ATPS evolution in confined and flowing settings important in biology and biotechnology.

5.
Proc Natl Acad Sci U S A ; 119(4)2022 01 25.
Artigo em Inglês | MEDLINE | ID: mdl-35046027

RESUMO

Production of high-energy lipids by microalgae may provide a sustainable energy source that can help tackle climate change. However, microalgae engineered to produce more lipids usually grow slowly, leading to reduced overall yields. Unfortunately, culture vessels used to select cells based on growth while maintaining high biomass production, such as well plates, water-in-oil droplet emulsions, and nanowell arrays, do not provide production-relevant environments that cells experience in scaled-up cultures (e.g., bioreactors or outdoor cultivation farms). As a result, strains that are developed in the laboratory may not exhibit the same beneficial phenotypic behavior when transferred to industrial production. Here, we introduce PicoShells, picoliter-scale porous hydrogel compartments, that enable >100,000 individual cells to be compartmentalized, cultured in production-relevant environments, and selected based on growth and bioproduct accumulation traits using standard flow cytometers. PicoShells consist of a hollow inner cavity where cells are encapsulated and a porous outer shell that allows for continuous solution exchange with the external environment. PicoShells allow for cell growth directly in culture environments, such as shaking flasks and bioreactors. We experimentally demonstrate that Chlorella sp., Saccharomyces cerevisiae, and Chinese hamster ovary cells, used for bioproduction, grow to significantly larger colony sizes in PicoShells than in water-in-oil droplet emulsions (P < 0.05). We also demonstrate that PicoShells containing faster dividing and growing Chlorella clonal colonies can be selected using a fluorescence-activated cell sorter and regrown. Using the PicoShell process, we select a Chlorella population that accumulates chlorophyll 8% faster than does an unselected population after a single selection cycle.


Assuntos
Técnicas de Cultura de Células , Ensaios de Triagem em Larga Escala/métodos , Nanopartículas , Nanotecnologia , Animais , Biocombustíveis , Células CHO , Cricetulus , Citometria de Fluxo , Microalgas/metabolismo , Técnicas Analíticas Microfluídicas
6.
Nat Methods ; 17(6): 587-593, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-32341544

RESUMO

The mechanical phenotype of a cell is an inherent biophysical marker of its state and function, with many applications in basic and applied biological research. Microfluidics-based methods have enabled single-cell mechanophenotyping at throughputs comparable to those of flow cytometry. Here, we present a standardized cross-laboratory study comparing three microfluidics-based approaches for measuring cell mechanical phenotype: constriction-based deformability cytometry (cDC), shear flow deformability cytometry (sDC) and extensional flow deformability cytometry (xDC). All three methods detect cell deformability changes induced by exposure to altered osmolarity. However, a dose-dependent deformability increase upon latrunculin B-induced actin disassembly was detected only with cDC and sDC, which suggests that when exposing cells to the higher strain rate imposed by xDC, cellular components other than the actin cytoskeleton dominate the response. The direct comparison presented here furthers our understanding of the applicability of the different deformability cytometry methods and provides context for the interpretation of deformability measurements performed using different platforms.


Assuntos
Citometria de Fluxo/métodos , Microfluídica/métodos , Actinas/efeitos dos fármacos , Compostos Bicíclicos Heterocíclicos com Pontes/administração & dosagem , Forma Celular/efeitos dos fármacos , Tamanho Celular/efeitos dos fármacos , Citoesqueleto/efeitos dos fármacos , Relação Dose-Resposta a Droga , Células HL-60 , Humanos , Processamento de Imagem Assistida por Computador , Tiazolidinas/administração & dosagem
7.
Nat Mater ; 20(4): 560-569, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33168979

RESUMO

Microporous annealed particle (MAP) scaffolds are flowable, in situ crosslinked, microporous scaffolds composed of microgel building blocks and were previously shown to accelerate wound healing. To promote more extensive tissue ingrowth before scaffold degradation, we aimed to slow MAP degradation by switching the chirality of the crosslinking peptides from L- to D-amino acids. Unexpectedly, despite showing the predicted slower enzymatic degradation in vitro, D-peptide crosslinked MAP hydrogel (D-MAP) hastened material degradation in vivo and imparted significant tissue regeneration to healed cutaneous wounds, including increased tensile strength and hair neogenesis. MAP scaffolds recruit IL-33 type 2 myeloid cells, which is amplified in the presence of D-peptides. Remarkably, D-MAP elicited significant antigen-specific immunity against the D-chiral peptides, and an intact adaptive immune system was required for the hydrogel-induced skin regeneration. These findings demonstrate that the generation of an adaptive immune response from a biomaterial is sufficient to induce cutaneous regenerative healing despite faster scaffold degradation.


Assuntos
Hidrogéis/química , Hidrogéis/farmacologia , Regeneração/efeitos dos fármacos , Regeneração/imunologia , Cicatrização/efeitos dos fármacos , Cicatrização/imunologia , Animais , Materiais Biocompatíveis/química , Materiais Biocompatíveis/farmacologia , Feminino , Interleucina-33/metabolismo , Camundongos , Porosidade , Pele/efeitos dos fármacos , Pele/imunologia , Alicerces Teciduais/química
8.
Anal Chem ; 93(4): 2317-2326, 2021 02 02.
Artigo em Inglês | MEDLINE | ID: mdl-33410663

RESUMO

Simple mixing of aqueous and oil solutions with amphiphilic particles leads to the spontaneous formation of uniform reaction volumes (dropicles) that can enable numerous applications in the analysis of biological entities (e.g., cells and molecules). Approaches to manufacture such amphiphilic particles are just starting to be investigated. Here, we investigate the tunable manufacturing of concentric amphiphilic particles, with outer hydrophobic and inner hydrophilic layers, fabricated by flowing reactive precursor streams through a 3D printed device with coaxial microfluidic channels, and curing the structured flow by UV exposure through a photomask. The dimensions of the engineered amphiphilic particles, including height, inner and outer diameters, and thicknesses of the hydrophobic and hydrophilic layers, are precisely controlled by modulating the UV exposure time, the precursor flow rate ratios, and the size of the channel in the exposure region. The particle design is systematically engineered to hold a wide range of droplet volumes, that is, from a few hundred picoliters to several nanoliters. We show that the particle size can be significantly reduced from previous reports to not only hold subnanoliter drops but the shape can also be tuned to increase the seeding density and orientation of dropicles within a well plate for imaging and analysis.

9.
Proc Natl Acad Sci U S A ; 115(40): 9986-9991, 2018 10 02.
Artigo em Inglês | MEDLINE | ID: mdl-30224472

RESUMO

Tumor cells are hypothesized to use proteolytic enzymes to facilitate invasion. Whether circulating tumor cells (CTCs) secrete these enzymes to aid metastasis is unknown. A quantitative and high-throughput approach to assay CTC secretion is needed to address this question. We developed an integrated microfluidic system that concentrates rare cancer cells >100,000-fold from 1 mL of whole blood into ∼50,000 2-nL drops composed of assay reagents within 15 min. The system isolates CTCs by size, exchanges fluid around CTCs to remove contaminants, introduces a matrix metalloprotease (MMP) substrate, and encapsulates CTCs into microdroplets. We found CTCs from prostate cancer patients possessed above baseline levels of MMP activity (1.7- to 200-fold). Activity of CTCs was generally higher than leukocytes from the same patient (average CTC/leukocyte MMP activity ratio, 2.6 ± 1.5). Higher MMP activity of CTCs suggests active proteolytic processes that may facilitate invasion or immune evasion and be relevant phenotypic biomarkers enabling companion diagnostics for anti-MMP therapies.


Assuntos
Separação Celular , Colagenases/metabolismo , Dispositivos Lab-On-A-Chip , Técnicas Analíticas Microfluídicas , Proteínas de Neoplasias/metabolismo , Células Neoplásicas Circulantes/metabolismo , Células A549 , Separação Celular/instrumentação , Separação Celular/métodos , Humanos , Técnicas Analíticas Microfluídicas/instrumentação , Técnicas Analíticas Microfluídicas/métodos , Células Neoplásicas Circulantes/patologia
10.
Small ; 16(29): e2000171, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32529791

RESUMO

Cell separation is a key step in many biomedical research areas including biotechnology, cancer research, regenerative medicine, and drug discovery. While conventional cell sorting approaches have led to high-efficiency sorting by exploiting the cell's specific properties, microfluidics has shown great promise in cell separation by exploiting different physical principles and using different properties of the cells. In particular, label-free cell separation techniques are highly recommended to minimize cell damage and avoid costly and labor-intensive steps of labeling molecular signatures of cells. In general, microfluidic-based cell sorting approaches can separate cells using "intrinsic" (e.g., fluid dynamic forces) versus "extrinsic" external forces (e.g., magnetic, electric field, etc.) and by using different properties of cells including size, density, deformability, shape, as well as electrical, magnetic, and compressibility/acoustic properties to select target cells from a heterogeneous cell population. In this work, principles and applications of the most commonly used label-free microfluidic-based cell separation methods are described. In particular, applications of microfluidic methods for the separation of circulating tumor cells, blood cells, immune cells, stem cells, and other biological cells are summarized. Computational approaches complementing such microfluidic methods are also explained. Finally, challenges and perspectives to further develop microfluidic-based cell separation methods are discussed.


Assuntos
Técnicas Analíticas Microfluídicas , Células Neoplásicas Circulantes , Contagem de Células , Separação Celular , Humanos , Microfluídica
12.
Cytometry A ; 97(9): 909-920, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-31856398

RESUMO

Imaging flow cytometry is a powerful tool by virtue of its capability for high-throughput cell analysis. The advent of high-speed optical imaging methods on a microfluidic platform has significantly improved cell throughput and brought many degrees of freedom to instrumentation and applications over the last decade, but it also poses a predicament on microfluidic chips. Specifically, as the throughput increases, the flow speed also increases (currently reaching 10 m/s): consequently, the increased hydrodynamic pressure on the microfluidic chip deforms the wall of the microchannel and produces detrimental effects lead to defocused and blur image. Here, we present a comprehensive study of the effects of flow-induced microfluidic chip wall deformation on imaging flow cytometry. We fabricated three types of microfluidic chips with the same geometry and different degrees of stiffness made of polydimethylsiloxane (PDMS) and glass to investigate material influence on image quality. First, we found the maximum deformation of a PDMS microchannel was >60 µm at a pressure of 0.6 MPa, while no appreciable deformation was identified in a glass microchannel at the same pressure. Second, we found the deviation of lag time that indicating velocity difference of migrating microbeads due to the deformation of the microchannel was 29.3 ms in a PDMS microchannel and 14.9 ms in a glass microchannel. Third, the glass microchannel focused cells into a slightly narrower stream in the X-Y plane and a significantly narrower stream in the Z-axis direction (focusing percentages were increased 30%, 32%, and 5.7% in the glass channel at flow velocities of 0.5, 1.5, and 3 m/s, respectively), and the glass microchannel showed stabler equilibrium positions of focused cells regardless of flow velocity. Finally, we achieved the world's fastest imaging flow cytometry by combining a glass microfluidic device with an optofluidic time-stretch microscopy imaging technique at a flow velocity of 25 m/s. © 2019 International Society for Advancement of Cytometry.


Assuntos
Técnicas Analíticas Microfluídicas , Microfluídica , Citometria de Fluxo , Hidrodinâmica , Dispositivos Lab-On-A-Chip , Microscopia
13.
Circ Res ; 123(1): 73-85, 2018 06 22.
Artigo em Inglês | MEDLINE | ID: mdl-29691232

RESUMO

RATIONALE: Cardiac fibroblasts do not form a syncytium but reside in the interstitium between myocytes. This topological relationship between fibroblasts and myocytes is maintained throughout postnatal life until an acute myocardial injury occurs, when fibroblasts are recruited to, proliferate and aggregate in the region of myocyte necrosis. The accumulation or aggregation of fibroblasts in the area of injury thus represents a unique event in the life cycle of the fibroblast, but little is known about how changes in the topological arrangement of fibroblasts after cardiac injury affect fibroblast function. OBJECTIVE: The objective of the study was to investigate how changes in topological states of cardiac fibroblasts (such as after cardiac injury) affect cellular phenotype. METHODS AND RESULTS: Using 2 and 3-dimensional (2D versus 3D) culture conditions, we show that simple aggregation of cardiac fibroblasts is sufficient by itself to induce genome-wide changes in gene expression and chromatin remodeling. Remarkably, gene expression changes are reversible after the transition from a 3D back to 2D state demonstrating a topological regulation of cellular plasticity. Genes induced by fibroblast aggregation are strongly associated and predictive of adverse cardiac outcomes and remodeling in mouse models of cardiac hypertrophy and failure. Using solvent-based tissue clearing techniques to create optically transparent cardiac scar tissue, we show that fibroblasts in the region of dense scar tissue express markers that are induced by fibroblasts in the 3D conformation. Finally, using live cell interferometry, a quantitative phase microscopy technique to detect absolute changes in single cell biomass, we demonstrate that conditioned medium collected from fibroblasts in 3D conformation compared with that from a 2D state significantly increases cardiomyocyte cell hypertrophy. CONCLUSIONS: Taken together, these findings demonstrate that simple topological changes in cardiac fibroblast organization are sufficient to induce chromatin remodeling and global changes in gene expression with potential functional consequences for the healing heart.


Assuntos
Agregação Celular , Plasticidade Celular , Montagem e Desmontagem da Cromatina , Fibroblastos/patologia , Expressão Gênica , Infarto do Miocárdio/patologia , Miocárdio/patologia , Animais , Técnicas de Cultura de Células , Meios de Cultivo Condicionados , Feminino , Fibroblastos/fisiologia , Masculino , Camundongos , Miócitos Cardíacos/citologia , Miócitos Cardíacos/fisiologia , Fenótipo
16.
Small ; 15(39): e1903147, 2019 09.
Artigo em Inglês | MEDLINE | ID: mdl-31410986

RESUMO

Delivery to the proper tissue compartment is a major obstacle hampering the potential of cellular therapeutics for medical conditions. Delivery of cells within biomaterials may improve localization, but traditional and newer void-forming hydrogels must be made in advance with cells being added into the scaffold during the manufacturing process. Injectable, in situ cross-linking microporous scaffolds are recently developed that demonstrate a remarkable ability to provide a matrix for cellular proliferation and growth in vitro in three dimensions. The ability of these scaffolds to deliver cells in vivo is currently unknown. Herein, it is shown that mesenchymal stem cells (MSCs) can be co-injected locally with microparticle scaffolds assembled in situ immediately following injection. MSC delivery within a microporous scaffold enhances MSC retention subcutaneously when compared to cell delivery alone or delivery within traditional in situ cross-linked nanoporous hydrogels. After two weeks, endothelial cells forming blood vessels are recruited to the scaffold and cells retaining the MSC marker CD29 remain viable within the scaffold. These findings highlight the utility of this approach in achieving localized delivery of stem cells through an injectable porous matrix while limiting obstacles of introducing cells within the scaffold manufacturing process.


Assuntos
Células-Tronco/citologia , Alicerces Teciduais/química , Animais , Células Cultivadas , Imunofluorescência , Células-Tronco Mesenquimais/citologia , Camundongos , Camundongos Endogâmicos C57BL , Microfluídica/métodos , Engenharia Tecidual/métodos
17.
Methods ; 136: 116-125, 2018 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-29031836

RESUMO

Innovations in optical microscopy have opened new windows onto scientific research, industrial quality control, and medical practice over the last few decades. One of such innovations is optofluidic time-stretch quantitative phase microscopy - an emerging method for high-throughput quantitative phase imaging that builds on the interference between temporally stretched signal and reference pulses by using dispersive properties of light in both spatial and temporal domains in an interferometric configuration on a microfluidic platform. It achieves the continuous acquisition of both intensity and phase images with a high throughput of more than 10,000 particles or cells per second by overcoming speed limitations that exist in conventional quantitative phase imaging methods. Applications enabled by such capabilities are versatile and include characterization of cancer cells and microalgal cultures. In this paper, we review the principles and applications of optofluidic time-stretch quantitative phase microscopy and discuss its future perspective.


Assuntos
Técnicas Analíticas Microfluídicas/métodos , Microscopia/métodos , Humanos , Microscopia de Contraste de Fase
18.
J Am Chem Soc ; 140(20): 6317-6324, 2018 05 23.
Artigo em Inglês | MEDLINE | ID: mdl-29723475

RESUMO

The Lewis acid-base adduct approach has been widely used to form uniform perovskite films, which has provided a methodological base for the development of high-performance perovskite solar cells. However, its incompatibility with formamidinium (FA)-based perovskites has impeded further enhancement of photovoltaic performance and stability. Here, we report an efficient and reproducible method to fabricate highly uniform FAPbI3 films via the adduct approach. Replacement of the typical Lewis base dimethyl sulfoxide (DMSO) with N-methyl-2-pyrrolidone (NMP) enabled the formation of a stable intermediate adduct phase, which can be converted into a uniform and pinhole-free FAPbI3 film. Infrared and computational analyses revealed a stronger interaction between NMP with the FA cation than DMSO, which facilitates the formation of a stable FAI·PbI2·NMP adduct. On the basis of the molecular interactions with different Lewis bases, we proposed criteria for selecting the Lewis bases. Owed to the high film quality, perovskite solar cells with the highest PCE over 20% (stabilized PCE of 19.34%) and average PCE of 18.83 ± 0.73% were demonstrated.

19.
Am J Physiol Lung Cell Mol Physiol ; 315(5): L673-L681, 2018 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-30160518

RESUMO

The asthma-obesity syndrome represents a major public health concern that disproportionately contributes to asthma severity and induces insensitivity to therapy. To date, no study has shown an intrinsic difference between human airway smooth muscle (HASM) cells derived from nonobese subjects and those derived from obese subjects. The objective of this study was to address whether there is a greater response to agonist-induced calcium mobilization, phosphorylation of myosin light chain (MLC), and greater shortening in HASM cells derived from obese subjects. HASM cells derived from nonobese and obese subjects were age and sex matched. Phosphorylation of MLC was measured after having been stimulated by carbachol. Carbachol- or histamine-induced mobilization of calcium and cell shortening were assessed in HASM cells derived from nonobese and obese donors. Agonist-induced MLC phosphorylation, mobilization of calcium, and cell shortening were greater in obese compared with non-obese-derived HASM cells. The MLC response was comparable in HASM cells derived from obese nonasthma and nonobese fatal asthma subjects. HASM cells derived from obese female subjects were more responsive to carbachol than HASM cells derived from obese male subjects. Insulin pretreatment had little effect on these responses. Our results show an increase in agonist-induced calcium mobilization associated with an increase in MLC phosphorylation and an increase in ASM cell shortening in favor of agonist-induced hyperresponsiveness in HASM cells derived from obese subjects. Our studies suggest that obesity induces a retained phenotype of hyperresponsiveness in cultured human airway smooth muscle cells.


Assuntos
Asma/fisiopatologia , Carbacol/farmacologia , Histamina/farmacologia , Contração Muscular/efeitos dos fármacos , Músculo Liso/patologia , Obesidade/complicações , Sistema Respiratório/patologia , Adulto , Asma/etiologia , Asma/metabolismo , Cálcio/metabolismo , Cardiotônicos/farmacologia , Estudos de Casos e Controles , Células Cultivadas , Feminino , Agonistas dos Receptores Histamínicos/farmacologia , Humanos , Masculino , Músculo Liso/efeitos dos fármacos , Cadeias Leves de Miosina/metabolismo , Prognóstico , Sistema Respiratório/efeitos dos fármacos
20.
Anal Chem ; 90(4): 2902-2911, 2018 02 20.
Artigo em Inglês | MEDLINE | ID: mdl-29376342

RESUMO

Inertial microfluidics has drawn much attention not only for its diverse applications but also for counterintuitive new fluid dynamic behaviors. Inertial focusing positions are determined by two lift forces, that is, shear gradient and wall-induced lift forces, that are generally known to be opposite in direction in the flow through a channel. However, the direction of shear gradient lift force can be reversed if velocity profiles are shaped properly. We used coflows of two liquids with different viscosities to produce complex velocity profiles that lead to inflection point focusing and alteration of inertial focusing positions; the number and the locations of focusing positions could be actively controlled by tuning flow rates and viscosities of the liquids. Interestingly, 3-inlet coflow systems showed focusing mode switching between inflection point focusing and channel face focusing depending on Reynolds number and particle size. The focusing mode switching occurred at a specific size threshold, which was easily adjustable with the viscosity ratio of the coflows. This property led to different-sized particles focusing at completely different focusing positions and resulted in highly efficient particle separation of which the separation threshold was tunable. Passive separation techniques, including inertial microfluidics, generally have a limitation in the control of separation parameters. Coflow systems can provide a simple and versatile platform for active tuning of velocity profiles and subsequent inertial focusing characteristics, which was demonstrated by active control of the focusing mode using viscosity ratio tuning and temperature changes of the coflows.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA