Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Opt Lett ; 48(23): 6224-6227, 2023 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-38039232

RESUMO

This Letter reports the first, to the best of our knowledge, spectral radiation induced attenuation (RIA) measurements of nested anti-resonant nodeless hollow-core fibers (NANFs). A 5-tube NANF, alongside a solid-core single-mode radiation resistant fiber (SM-RRF), was irradiated under γ-ray up to 101 kGy (SiO2) and under x-ray up to 241 kGy (SiO2). No RIA was observed in the NANF in the second half of the O-band, the S-band, the C-band, and the L-band. The NANF showed a reduction of absorption bands associated with water and HCl under irradiation. Three new attenuation peaks were radiolytically induced and are attributed to the creation of HNO3. These peaks are centered respectively at 1441 nm, 1532 nm, and 1628 nm, with a full width at half maximum (FWHM) of, respectively, 10 nm, 12 nm, and 12 nm. These results demonstrate that the wide bandwidth range of NANFs is essentially unaffected by radiation, but the internal gas contents of the NANF must be managed to avoid producing undesirable spectral features through radiolytic reactions. Wide spectral regions almost unaffected by the ionizing radiation could open new possibilities for the use of NANF in harsh radiation environments.

2.
Appl Opt ; 62(16): E43-E50, 2023 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-37706888

RESUMO

The optical-fiber-based dosimeter of the LUMINA project was deployed in August 2021 in the International Space Station in the framework of the Alpha mission. The sensing elements of the dosimeter are P-doped optical fibers, which were proven to be excellent candidates for dosimetry applications. The twofold objective of this paper is to provide a theoretical model for the radiation response of the dosimeter and to report on the experimental work carried out at CERN for the qualification and calibration of the engineering model of the LUMINA dosimeter. Combining the theoretical response and experimental data, the calibration curve of the flight model is obtained. Finally, this study broadens the investigation of the room temperature radiation response of P-doped optical fibers in a range of dose rates 104 times lower than previously reported, from 21µGy(SiO2)/h to145mGy(SiO2)/h.

3.
Opt Lett ; 45(18): 5201-5204, 2020 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-32932488

RESUMO

We demonstrate the feasibility of resetting and reusing dosimeters exploiting the measurement of the infrared radiation-induced attenuation (IR-RIA) in phosphosilicate optical fibers (OFs) to provide point or distributed dose measurements in radiation environments. To bleach the room temperature stable IR-RIA, we used the photobleaching (PB) phenomenon. The PB efficiency was evaluated for different wavelengths in the [400-1100] nm range. The best identified PB resetting condition consists in using a continuous-wave Argon-ion laser at 514 nm. This treatment successfully bleached ∼97% of the IR-RIA at 1550 nm of a 30 m-long P-doped single mode optical fiber X-ray irradiated at a dose of 100 Gy. Successive re-irradiations of the same OF sample, regenerated after each run, confirm that the dosimeter keeps the same calibration curve during the whole process.

4.
Beilstein J Nanotechnol ; 10: 211-221, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30746314

RESUMO

We report an experimental study demonstrating the feasibility to produce both pure and Ge-doped silica nanoparticles (size ranging from tens up to hundreds of nanometers) using nanosecond pulsed KrF laser ablation of bulk glass. In particular, pure silica nanoparticles were produced using a laser pulse energy of 400 mJ on pure silica, whereas Ge-doped nanoparticles were obtained using 33 and 165 mJ per pulse on germanosilicate glass. The difference in the required energy is attributed to the Ge doping, which modifies the optical properties of the silica by facilitating energy absorption processes such as multiphoton absorption or by introducing absorbing point defects. Defect generation in bulk pure silica before nanoparticle production starts is also suggested by our results. Regarding the Ge-doped samples, scanning electron microscopy (SEM) and cathodoluminescence (CL) investigations revealed a good correspondence between the morphology of the generated particles and their emission signal due to the germanium lone pair center (GLPC), regardless of the energy per pulse used for their production. This suggests a reasonable homogeneity of the emission features of the samples. Similarly, energy dispersive X-ray spectroscopy (EDX) data showed that the O, Ge and Si signals qualitatively correspond to the particle morphology, suggesting a generally uniform chemical composition of the Ge-doped samples. No significant CL signal could be detected in pure silica nanoparticles, evidencing the positive impact of Ge for the development of intrinsically emitting nanoparticles. Transmission electron microscope (TEM) data suggested that the Ge-doped silica nanoparticles are amorphous. SEM and TEM data evidenced that the produced nanoparticles tend to be slightly more spherical in shape for a higher energy per pulse. Scanning transmission electron microscope (STEM) data have shown that, regardless of size and applied energy per pulse, in each nanoparticle, some inhomogeneity is present in the form of brighter (i.e., more dense) features of a few nanometers.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA