RESUMO
Expansion microscopy (ExM) allows scalable imaging of preserved 3D biological specimens with nanoscale resolution on fast diffraction-limited microscopes. Here, we explore the utility of ExM in the larval and embryonic zebrafish, an important model organism for the study of neuroscience and development. Regarding neuroscience, we found that ExM enabled the tracing of fine processes of radial glia, which are not resolvable with diffraction-limited microscopy. ExM further resolved putative synaptic connections, as well as molecular differences between densely packed synapses. Finally, ExM could resolve subsynaptic protein organization, such as ring-like structures composed of glycine receptors. Regarding development, we used ExM to characterize the shapes of nuclear invaginations and channels, and to visualize cytoskeletal proteins nearby. We detected nuclear invagination channels at late prophase and telophase, potentially suggesting roles for such channels in cell division. Thus, ExM of the larval and embryonic zebrafish may enable systematic studies of how molecular components are configured in multiple contexts of interest to neuroscience and developmental biology.
Assuntos
Microscopia/métodos , Peixe-Zebra/anatomia & histologia , Animais , Encéfalo/ultraestrutura , Núcleo Celular/ultraestrutura , Biologia do Desenvolvimento/métodos , Larva/anatomia & histologia , Neurociências/métodos , Sinapses/ultraestrutura , Peixe-Zebra/embriologiaRESUMO
Drug-induced gastrointestinal toxicities (GITs) rank among the most common clinical side effects. Preclinical efforts to reduce incidence are limited by inadequate predictivity of in vitro assays. Recent breakthroughs in in vitro culture methods support intestinal stem cell maintenance and continual differentiation into the epithelial cell types resident in the intestine. These diverse cells self-assemble into microtissues with in vivo-like architecture. Here, we evaluate human GI microtissues grown in transwell plates that allow apical and/or basolateral drug treatment and 96-well throughput. Evaluation of assay utility focused on predictivity for diarrhea because this adverse effect correlates with intestinal barrier dysfunction which can be measured in GI microtissues using transepithelial electrical resistance (TEER). A validation set of widely prescribed drugs was assembled and tested for effects on TEER. When the resulting TEER inhibition potencies were adjusted for clinical exposure, a threshold was identified that distinguished drugs that induced clinical diarrhea from those that lack this liability. Microtissue TEER assay predictivity was further challenged with a smaller set of drugs whose clinical development was limited by diarrhea that was unexpected based on 1-month animal studies. Microtissue TEER accurately predicted diarrhea for each of these drugs. The label-free nature of TEER enabled repeated quantitation with sufficient precision to develop a mathematical model describing the temporal dynamics of barrier damage and recovery. This human 3D GI microtissue is the first in vitro assay with validated predictivity for diarrhea-inducing drugs. It should provide a platform for lead optimization and offers potential for dose schedule exploration.
Assuntos
Diarreia/induzido quimicamente , Avaliação de Medicamentos/métodos , Efeitos Colaterais e Reações Adversas Relacionados a Medicamentos , Células Epiteliais/fisiologia , Células Epiteliais/ultraestrutura , Células CACO-2 , Diferenciação Celular , Impedância Elétrica , Humanos , Preparações Farmacêuticas , Cultura Primária de CélulasRESUMO
Overexpression of anti-apoptotic proteins MCL1 and Bcl-xL are frequently observed in many cancers. Inhibitors targeting MCL1 are in clinical development, however numerous cancer models are intrinsically resistant to this approach. To discover mechanisms underlying resistance to MCL1 inhibition, we performed multiple flow-cytometry based genome-wide CRISPR screens interrogating two drugs that directly (MCL1i) or indirectly (CDK9i) target MCL1. Remarkably, both screens identified three components (CUL5, RNF7 and UBE2F) of a cullin-RING ubiquitin ligase complex (CRL5) that resensitized cells to MCL1 inhibition. We find that levels of the BH3-only pro-apoptotic proteins Bim and Noxa are proteasomally regulated by the CRL5 complex. Accumulation of Noxa caused by depletion of CRL5 components was responsible for re-sensitization to CDK9 inhibitor, but not MCL1 inhibitor. Discovery of a novel role of CRL5 in apoptosis and resistance to multiple types of anticancer agents suggests the potential to improve combination treatments.