Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
J Neurosci ; 30(47): 16044-52, 2010 Nov 24.
Artigo em Inglês | MEDLINE | ID: mdl-21106843

RESUMO

To determine the role of cellularly generated protons in synaptic signaling, we recorded GABA miniature IPSCs (mIPSCs) from cultured rat cerebellar granule cells (CGCs) while varying the extracellular pH buffering capacity. Consistent with previous reports, we found that increasing pH from 7.4 to 8.0 sped mIPSC rise time and suppressed both amplitude of the current and total charge transferred. Conversely, acidification (from pH 7.4 to 6.8) slowed the rise time and increased current amplitude and total charge transferred. In a manner consistent with alkalinization, increasing the buffering capacity from 3 to 24 mm HEPES at pH 7.4 resulted in faster mIPSC rise time, a 37% reduction in amplitude, and a 48% reduction in charge transferred. Supplementing the normal physiological buffers (24 mm HCO(3)(-)/5%CO(2)) with 10 mm HEPES similarly diminished mIPSCs in a manner consistent with alkalinization, resulting in faster rise time, a 39% reduction in amplitude, and a 51% reduction in charge transferred. These findings suggest the existence of an acidifying synaptic force that is overcome by commonly used concentrations (10 mm) of HEPES buffer. Here we show that Na(+)/H(+) exchanger (NHE) activity appears to, in part, contribute to this synaptic acidification because inhibition of NHE by amiloride or lithium under physiological or weak buffering conditions alters mIPSCs in a manner consistent with alkalinization. These results suggest that acidification of the synaptic cleft occurs physiologically during GABAergic transmission and that NHE plays a critical role in generating the acidic nano-environment at the synapse.


Assuntos
Potenciais Pós-Sinápticos Inibidores/fisiologia , Receptores de GABA-A/fisiologia , Sinapses/fisiologia , Animais , Células Cultivadas , Cerebelo/citologia , Cerebelo/efeitos dos fármacos , Cerebelo/fisiologia , Feminino , HEPES/farmacologia , Concentração de Íons de Hidrogênio , Potenciais Pós-Sinápticos Inibidores/efeitos dos fármacos , Masculino , Ratos , Ratos Sprague-Dawley , Sinapses/efeitos dos fármacos
2.
J Neurobiol ; 52(3): 189-202, 2002 Sep 05.
Artigo em Inglês | MEDLINE | ID: mdl-12210103

RESUMO

At maturity, the AMPA receptors of auditory neurons exhibit very rapid desensitization kinetics and high permeability to calcium, reflecting the predominance of GluR3 flop and GluR4 flop subunits and the paucity of GluR2. We used mRNA analysis and immunoblotting to contrast the development of AMPA receptor structure in the chick cochlear nucleus [nucleus magnocellularis (NM)] with that of the slowly desensitizing and calcium-impermeable AMPA receptors of brainstem motor neurons in the nucleus of the glossopharyngeal/vagal nerves. The relative abundance of transcripts for GluRs 1-4 changes substantially in auditory (but not motor) neurons after embryonic day (E)10, with large decreases in GluR2 and increases in GluR3 and GluR4. Relative to the motor neurons, NM neurons show a higher abundance of flop isoforms of GluRs 2-4 at E10, suggesting that auditory neurons are already biased toward expression of flop isoforms before the onset of synaptic function at E11. Immunoreactivities in NM show very distinct developmental patterns from E13 onward: GluR2 declines by >90%, GluR3 increases threefold, and GluR4 remains relatively constant. Our results show that there are a series of critical points during normal development, most occurring after the onset of function, when rapid changes in receptor structure (occurring via both transcriptional and post-transcriptional control mechanisms) produce the specialized AMPA receptor functions that enable auditory neurons to accurately encode acoustic information.


Assuntos
Núcleo Coclear/embriologia , Núcleo Coclear/fisiologia , Neurônios Motores/fisiologia , Neurônios Aferentes/fisiologia , Receptores de AMPA/genética , Processamento Alternativo/fisiologia , Animais , Anticorpos , Embrião de Galinha , Galinhas , Núcleo Coclear/citologia , Regulação da Expressão Gênica no Desenvolvimento , Nervo Glossofaríngeo/citologia , Nervo Glossofaríngeo/embriologia , Isomerismo , Potenciais da Membrana/fisiologia , Técnicas de Patch-Clamp , RNA Mensageiro/análise , Receptores de AMPA/química , Receptores de AMPA/imunologia , Nervo Vago/citologia , Nervo Vago/embriologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA