Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Antibodies (Basel) ; 13(2)2024 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-38804307

RESUMO

The anaplastic lymphoma kinase (ALK, CD247) is a potential target for antibody-based therapy. However, no antibody-based therapeutics targeting ALK have entered clinical trials, necessitating the development of novel antibodies with unique therapeutic merits. Single-domain antibodies (sdAb) bear therapeutic advantages compared to the full-length antibody including deeper tumor penetration, cost-effective production and fast washout from normal tissues. In this study, we identified a human immunoglobulin heavy chain variable domain (VH domain) (VH20) from an in-house phage library. VH20 exhibits good developability and high specificity with no off-target binding to ~6000 human membrane proteins. VH20 efficiently bound to the glycine-rich region of ALK with an EC50 of 0.4 nM and a KD of 6.54 nM. Both VH20-based bispecific T cell engager (TCE) and chimeric antigen receptor T cells (CAR Ts) exhibited potent cytolytic activity to ALK-expressing tumor cells in an ALK-dependent manner. VH20 CAR Ts specifically secreted proinflammatory cytokines including IL-2, TNFα and IFNγ after incubation with ALK-positive cells. To our knowledge, this is the first reported human single-domain antibody against ALK. Our in vitro characterization data indicate that VH20 could be a promising ALK-targeting sdAb with potential applications in ALK-expressing tumors, including neuroblastoma (NBL) and non-small cell lung cancer.

2.
J Exp Clin Cancer Res ; 43(1): 173, 2024 Jun 20.
Artigo em Inglês | MEDLINE | ID: mdl-38898487

RESUMO

BACKGROUND: Though tamoxifen achieves success in treating estrogen receptor α (ERα)-positive breast cancer, the followed development of tamoxifen resistance is a common challenge in clinic. Signals downstream of prolactin receptor (PRLR) could synergize with ERα in breast cancer progression. However, the potential effect of targeting PRL-PRLR axis combined with tamoxifen has not been thoroughly investigated. METHODS: High-throughput RNA-seq data obtained from TCGA, Metabric and GEO datasets were analyzed to explore PRLR expression in breast cancer cell and the association of PRLR expression with tamoxifen treatment. Exogenous or PRL overexpression cell models were employed to investigate the role of activated PRLR pathway in mediating tamoxifen insensitivity. Immunotoxin targeting PRLR (N8-PE24) was constructed with splicing-intein technique, and the efficacy of N8-PE24 against breast cancer was evaluated using in vitro and in vivo methods, including analysis of cells growth or apoptosis, 3D spheroids culture, and animal xenografts. RESULTS: PRLR pathway activated by PRL could significantly decrease sensitivity of ERα-positive breast cancer cells to tamoxifen. Tamoxifen treatment upregulated transcription of PRLR and could induce significant accumulation of PRLR protein in breast cancer cells by alkalizing lysosomes. Meanwhile, tamoxifen-resistant MCF7 achieved by long-term tamoxifen pressure exhibited both upregulated transcription and protein level of PRLR. Immunotoxin N8-PE24 enhanced sensitivity of breast cancer cells to tamoxifen both in vitro and in vivo. In xenograft models, N8-PE24 significantly enhanced the efficacy of tamoxifen and paclitaxel when treating PRLR-positive triple-negative breast cancer. CONCLUSIONS: PRL-PRLR axis potentially associates with tamoxifen insensitivity in ERα-positive breast cancer cells. N8-PE24 could inhibit cell growth of the breast cancers and promote drug sensitivity of PRLR-positive breast cancer cells to tamoxifen and paclitaxel. Our study provides a new perspective for targeting PRLR to treat breast cancer.


Assuntos
Neoplasias da Mama , Imunotoxinas , Receptores da Prolactina , Tamoxifeno , Tamoxifeno/farmacologia , Tamoxifeno/uso terapêutico , Humanos , Feminino , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/metabolismo , Neoplasias da Mama/patologia , Neoplasias da Mama/genética , Animais , Receptores da Prolactina/metabolismo , Receptores da Prolactina/genética , Camundongos , Imunotoxinas/farmacologia , Imunotoxinas/uso terapêutico , Ensaios Antitumorais Modelo de Xenoenxerto , Linhagem Celular Tumoral , Resistencia a Medicamentos Antineoplásicos , Proliferação de Células , Apoptose
3.
Nat Commun ; 15(1): 6892, 2024 Aug 12.
Artigo em Inglês | MEDLINE | ID: mdl-39134522

RESUMO

Nipah virus infection, one of the top priority diseases recognized by the World Health Organization, underscores the urgent need to develop effective countermeasures against potential epidemics and pandemics. Here, we identify a fully human single-domain antibody that targets a highly conserved cryptic epitope situated at the dimeric interface of the Nipah virus G protein (receptor binding protein, RBP), as elucidated through structures by high-resolution cryo-electron microscopy (cryo-EM). This unique binding mode disrupts the tetramerization of the G protein, consequently obstructing the activation of the F protein and inhibiting viral membrane fusion. Furthermore, our investigations reveal that this compact antibody displays enhanced permeability across the blood-brain barrier (BBB) and demonstrates superior efficacy in eliminating pseudovirus within the brain in a murine model of Nipah virus infection, particularly compared to the well-characterized antibody m102.4 in an IgG1 format. Consequently, this single-domain antibody holds promise as a therapeutic candidate to prevent Nipah virus infections and has potential implications for vaccine development.


Assuntos
Anticorpos Antivirais , Microscopia Crioeletrônica , Epitopos , Infecções por Henipavirus , Vírus Nipah , Anticorpos de Domínio Único , Vírus Nipah/imunologia , Humanos , Animais , Infecções por Henipavirus/imunologia , Infecções por Henipavirus/prevenção & controle , Infecções por Henipavirus/virologia , Epitopos/imunologia , Camundongos , Anticorpos de Domínio Único/imunologia , Anticorpos de Domínio Único/química , Anticorpos Antivirais/imunologia , Barreira Hematoencefálica/metabolismo , Barreira Hematoencefálica/imunologia , Proteínas do Envelope Viral/imunologia , Proteínas do Envelope Viral/química , Feminino , Células HEK293
4.
MAbs ; 16(1): 2387240, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39113562

RESUMO

Prostate stem cell antigen (PSCA) is expressed in all stages of prostate cancer, including in advanced androgen-independent tumors and bone metastasis. PSCA may associate with prostate carcinogenesis and lineage plasticity in prostate cancer. PSCA is also a promising theranostic marker for a variety of other solid tumors, including pancreatic adenocarcinoma and renal cell carcinoma. Here, we identified a novel fully human PSCA antibody using phage display methodology. The structure-based affinity maturation yielded a high-affinity binder, F12, which is highly specific and does not bind to 6,000 human membrane proteins based on a membrane proteome array assay. F12 targets PSCA amino acids 63-69 as tested by the peptide scanning microarray, and it cross-reacts with the murine PSCA. IgG1 F12 efficiently internalizes into PSCA-expressing tumor cells. The antimitotic reagent monomethyl auristatin E (MMAE)-conjugated IgG1 F12 (ADC, F12-MMAE) exhibits dose-dependent efficacy and specificity in a human prostate cancer PC-3-PSCA xenograft NSG mouse model. This is a first reported ADC based on a fully human PSCA antibody and MMAE that is characterized in a xenograft murine model, which warrants further optimizations and investigations in additional preclinical tumor models, including prostate and other solid tumors.


Assuntos
Antígenos de Neoplasias , Proteínas Ligadas por GPI , Imunoconjugados , Proteínas de Neoplasias , Neoplasias da Próstata , Ensaios Antitumorais Modelo de Xenoenxerto , Humanos , Masculino , Neoplasias da Próstata/tratamento farmacológico , Neoplasias da Próstata/patologia , Neoplasias da Próstata/imunologia , Imunoconjugados/farmacologia , Animais , Antígenos de Neoplasias/imunologia , Camundongos , Proteínas Ligadas por GPI/imunologia , Proteínas de Neoplasias/imunologia , Proteínas de Neoplasias/antagonistas & inibidores , Linhagem Celular Tumoral , Oligopeptídeos/imunologia , Oligopeptídeos/farmacologia , Imunoglobulina G/imunologia , Anticorpos Monoclonais/imunologia , Anticorpos Monoclonais/farmacologia
5.
Nat Commun ; 15(1): 7141, 2024 Aug 21.
Artigo em Inglês | MEDLINE | ID: mdl-39164224

RESUMO

Novel chimeric antigen receptor (CAR) T-cell approaches are needed to improve therapeutic efficacy in solid tumors. High-risk neuroblastoma is an aggressive pediatric solid tumor that expresses cell-surface GPC2 and GD2 with a tumor microenvironment infiltrated by CD16a-expressing innate immune cells. Here we engineer T-cells to express a GPC2-directed CAR and simultaneously secrete a bispecific innate immune cell engager (BiCE) targeting both GD2 and CD16a. In vitro, GPC2.CAR-GD2.BiCE T-cells induce GPC2-dependent cytotoxicity and secrete GD2.BiCE that promotes GD2-dependent activation of antitumor innate immunity. In vivo, GPC2.CAR-GD2.BiCE T-cells locally deliver GD2.BiCE and increase intratumor retention of NK-cells. In mice bearing neuroblastoma patient-derived xenografts and reconstituted with human CD16a-expressing immune cells, GD2.BiCEs enhance GPC2.CAR antitumor efficacy. A CAR.BiCE strategy should be considered for tumor histologies where antigen escape limits CAR efficacy, especially for solid tumors like neuroblastoma that are infiltrated by innate immune cells.


Assuntos
Gangliosídeos , Imunidade Inata , Imunoterapia Adotiva , Células Matadoras Naturais , Neuroblastoma , Receptores de Antígenos Quiméricos , Linfócitos T , Neuroblastoma/imunologia , Neuroblastoma/terapia , Neuroblastoma/patologia , Animais , Humanos , Receptores de Antígenos Quiméricos/imunologia , Receptores de Antígenos Quiméricos/metabolismo , Camundongos , Gangliosídeos/imunologia , Linhagem Celular Tumoral , Imunoterapia Adotiva/métodos , Células Matadoras Naturais/imunologia , Linfócitos T/imunologia , Ensaios Antitumorais Modelo de Xenoenxerto , Glipicanas/imunologia , Glipicanas/metabolismo , Microambiente Tumoral/imunologia , Feminino
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA