Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 75
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
J Hepatol ; 80(3): 467-481, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-37972658

RESUMO

BACKGROUND & AIMS: Metabolic dysfunction-associated steatohepatitis (MASH) is linked to insulin resistance and type 2 diabetes and marked by hepatic inflammation, microvascular dysfunction, and fibrosis, impairing liver function and aggravating metabolic derangements. The liver homeostatic interactions disrupted in MASH are still poorly understood. We aimed to elucidate the plasticity and changing interactions of non-parenchymal cells associated with advanced MASH. METHODS: We characterized a diet-induced mouse model of advanced MASH at single-cell resolution and validated findings by assaying chromatin accessibility, bioimaging murine and human livers, and via functional experiments in vivo and in vitro. RESULTS: The fibrogenic activation of hepatic stellate cells (HSCs) led to deterioration of a signaling module consisting of the bile acid receptor NR1H4/FXR and HSC-specific GS-protein-coupled receptors (GSPCRs) capable of preserving stellate cell quiescence. Accompanying HSC activation, we further observed the attenuation of HSC Gdf2 expression, and a MASH-associated expansion of a CD207-positive macrophage population likely derived from both incoming monocytes and Kupffer cells. CONCLUSION: We conclude that HSC-expressed NR1H4 and GSPCRs of the healthy liver integrate postprandial cues, which sustain HSC quiescence and, through paracrine signals, overall sinusoidal health. Hence HSC activation in MASH not only drives fibrogenesis but may desensitize the hepatic sinusoid to liver homeostatic signals. IMPACT AND IMPLICATIONS: Homeostatic interactions between hepatic cell types and their deterioration in metabolic dysfunction-associated steatohepatitis are poorly characterized. In our current single cell-resolved study of advanced murine metabolic dysfunction-associated steatohepatitis, we identified a quiescence-associated hepatic stellate cell-signaling module with potential to preserve normal sinusoid function. As expression levels of its constituents are conserved in the human liver, stimulation of the identified signaling module is a promising therapeutic strategy to restore sinusoid function in chronic liver disease.


Assuntos
Diabetes Mellitus Tipo 2 , Fígado Gorduroso , Camundongos , Humanos , Animais , Pericitos/metabolismo , Diabetes Mellitus Tipo 2/metabolismo , Fígado/patologia , Transdução de Sinais , Células Estreladas do Fígado/metabolismo , Fígado Gorduroso/metabolismo , Cirrose Hepática/patologia , Fator 2 de Diferenciação de Crescimento/metabolismo
2.
Curr Opin Nephrol Hypertens ; 33(4): 433-440, 2024 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-38690798

RESUMO

PURPOSE OF REVIEW: Activation of the calcium-sensing receptor (CASR) in the parathyroid gland suppresses the release of parathyroid hormone (PTH). Furthermore, activation of the renal CASR directly increases the urinary excretion of calcium, by inhibiting transepithelial calcium transport in the nephron. Gain-of-function mutations in the CASR gene lead to autosomal dominant hypocalcemia 1 (ADH1), with inappropriately low PTH levels and hypocalcemia, indicative of excessive activation of the parathyroid CASR. However, hypercalciuria is not always observed. The reason why the manifestation of hypercalciuria is not uniform among ADH1 patients is not well understood. RECENT FINDINGS: Direct activation of the CASR in the kidney has been cumbersome to study, and an indirect measure to effectively estimate the degree of CASR activation following chronic hypercalcemia or genetic gain-of-function CASR activation has been lacking. Studies have shown that expression of the pore-blocking claudin-14 is strongly stimulated by the CASR in a dose-dependent manner. This stimulatory effect is abolished after renal Casr ablation in hypercalcemic mice, suggesting that claudin-14 abundance may gauge renal CASR activation. Using this marker has led to unexpected discoveries regarding renal CASR activation. SUMMARY: These new studies have informed on renal CASR activation thresholds and the downstream CASR-regulated calcium transport mechanisms.


Assuntos
Rim , Receptores de Detecção de Cálcio , Receptores de Detecção de Cálcio/metabolismo , Receptores de Detecção de Cálcio/genética , Humanos , Animais , Rim/metabolismo , Hipercalciúria/metabolismo , Hipercalciúria/genética , Cálcio/metabolismo , Hipercalcemia/metabolismo , Hipercalcemia/genética , Claudinas/metabolismo , Claudinas/genética , Hipocalcemia , Hipoparatireoidismo/congênito
3.
Proc Natl Acad Sci U S A ; 118(48)2021 11 30.
Artigo em Inglês | MEDLINE | ID: mdl-34810264

RESUMO

Calcium (Ca2+) homeostasis is maintained through coordination between intestinal absorption, renal reabsorption, and bone remodeling. Intestinal and renal (re)absorption occurs via transcellular and paracellular pathways. The latter contributes the bulk of (re)absorption under conditions of adequate intake. Epithelial paracellular permeability is conferred by tight-junction proteins called claudins. However, the molecular identity of the paracellular Ca2+ pore remains to be delineated. Claudins (Cldn)-2 and -12 confer Ca2+ permeability, but deletion of either claudin does not result in a negative Ca2+ balance or increased calciotropic hormone levels, suggesting the existence of additional transport pathways or parallel roles for the two claudins. To test this, we generated a Cldn2/12 double knockout mouse (DKO). These animals have reduced intestinal Ca2+ absorption. Colonic Ca2+ permeability is also reduced in DKO mice and significantly lower than single-null animals, while small intestine Ca2+ permeability is unaltered. The DKO mice display significantly greater urinary Ca2+ wasting than Cldn2 null animals. These perturbations lead to hypocalcemia and reduced bone mineral density, which was not observed in single-KO animals. Both claudins were localized to colonic epithelial crypts and renal proximal tubule cells, but they do not physically interact in vitro. Overexpression of either claudin increased Ca2+ permeability in cell models with endogenous expression of the other claudin. We find claudin-2 and claudin-12 form partially redundant, independent Ca2+ permeable pores in renal and colonic epithelia that enable paracellular Ca2+ (re)absorption in these segments, with either one sufficient to maintain Ca2+ balance.


Assuntos
Cálcio/metabolismo , Claudinas/genética , Hipocalcemia/metabolismo , Animais , Calcificação Fisiológica , Cátions , Genótipo , Células HEK293 , Homeostase , Humanos , Técnicas In Vitro , Camundongos , Camundongos Knockout , Permeabilidade
4.
J Am Soc Nephrol ; 33(3): 547-564, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-35022312

RESUMO

BACKGROUND: Treatment with the aminoglycoside antibiotic gentamicin can be associated with severe adverse effects, including renal Ca2+ wasting. The underlying mechanism is unknown but it has been proposed to involve activation of the Ca2+-sensing receptor (CaSR) in the thick ascending limb, which would increase expression of claudin-14 (CLDN14) and limit Ca2+ reabsorption. However, no direct evidence for this hypothesis has been presented. METHODS: We studied the effect of gentamicin in vivo using mouse models with impaired Ca2+ reabsorption in the proximal tubule and the thick ascending limb. We used a Cldn14 promoter luciferase reporter assay to study CaSR activation and investigated the effect of gentamicin on activity of the distal nephron Ca2+ channel transient receptor potential vanilloid 5 (TRPV5), as determined by patch clamp in HEK293 cells. RESULTS: Gentamicin increased urinary Ca2+ excretion in wild-type mice after acute and chronic administration. This calciuretic effect was unaltered in mice with genetic CaSR overactivation and was present in furosemide-treated animals, whereas the calciuretic effect in Cldn14-/- mice and mice with impaired proximal tubular Ca2+ reabsorption (claudin-2 [CLDN2]-deficient Cldn2-/- mice) was equivalent to that of wild-type mice. In vitro, gentamicin failed to activate the CaSR. In contrast, patch clamp analysis revealed that gentamicin strongly inhibited rabbit and human TRPV5 activity and chronic gentamicin administration downregulated distal nephron Ca2+ transporters. CONCLUSIONS: Gentamicin does not cause hypercalciuria via activation of the CaSR-CLDN14 pathway or by interfering with proximal tubular CLDN2-dependent Ca2+ reabsorption. Instead, gentamicin blocks distal Ca2+ reabsorption by direct inhibition of the Ca2+ channel TRPV5. These findings offer new insights into Ca2+ wasting in patients treated with gentamicin.


Assuntos
Gentamicinas , Receptores de Detecção de Cálcio , Animais , Cálcio/metabolismo , Canais de Cálcio/metabolismo , Proteínas de Transporte , Claudinas , Gentamicinas/farmacologia , Células HEK293 , Humanos , Camundongos , Coelhos , Receptores de Detecção de Cálcio/genética , Canais de Cátion TRPV/genética
5.
J Biol Chem ; 297(2): 100915, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-34174287

RESUMO

The thiazide-sensitive sodium-chloride cotransporter (NCC) in the renal distal convoluted tubule (DCT) plays a critical role in regulating blood pressure (BP) and K+ homeostasis. During hyperkalemia, reduced NCC phosphorylation and total NCC abundance facilitate downstream electrogenic K+ secretion and BP reduction. However, the mechanism for the K+-dependent reduction in total NCC levels is unknown. Here, we show that NCC levels were reduced in ex vivo renal tubules incubated in a high-K+ medium for 24-48 h. This reduction was independent of NCC transcription, but was prevented using inhibitors of the proteasome (MG132) or lysosome (chloroquine). Ex vivo, high K+ increased NCC ubiquitylation, but inhibition of the ubiquitin conjugation pathway prevented the high K+-mediated reduction in NCC protein. In tubules incubated in high K+ media ex vivo or in the renal cortex of mice fed a high K+ diet for 4 days, the abundance and phosphorylation of heat shock protein 70 (Hsp70), a key regulator of ubiquitin-dependent protein degradation and protein folding, were decreased. Conversely, in similar samples the expression of PP1α, known to dephosphorylate Hsp70, was also increased. NCC coimmunoprecipitated with Hsp70 and PP1α, and inhibiting their actions prevented the high K+-mediated reduction in total NCC levels. In conclusion, we show that hyperkalemia drives NCC ubiquitylation and degradation via a PP1α-dependent process facilitated by Hsp70. This mechanism facilitates K+-dependent reductions in NCC to protect plasma K+ homeostasis and potentially reduces BP.


Assuntos
Proteínas de Choque Térmico HSP70/metabolismo , Hipertensão/patologia , Túbulos Renais Distais/metabolismo , Potássio na Dieta/farmacologia , Membro 3 da Família 12 de Carreador de Soluto/metabolismo , Animais , Modelos Animais de Doenças , Hipertensão/tratamento farmacológico , Hipertensão/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Fosforilação , Proteólise , Transdução de Sinais , Membro 3 da Família 12 de Carreador de Soluto/genética , Ubiquitinação
6.
FASEB J ; 35(11): e21982, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34694654

RESUMO

Activation of the basolateral calcium sensing receptor (CaSR) in the renal tubular thick ascending limb (TAL) increases claudin-14 expression, which reduces paracellular calcium (Ca2+ ) permeability, thus increasing urinary Ca2+ excretion. However, the upstream signaling pathway contributing to altered CLDN14 gene expression is unknown. To delineate this pathway, we identified and then cloned the CaSR responsive region including the promoter of mouse Cldn14 into a luciferase reporter vector. This 1500 bp sequence upstream of the 5' UTR of Cldn14 variant 1, conferred increased reporter activity in the presence of high extracellular Ca2+ (5 mM) relative to a lower (0.5 mM) concentration. Assessment of Cldn14 reporter activity in response to increased extracellular Ca2+ in the presence or absence of specific inhibitors confirmed signaling through PLC and p38, but not JNK. Overexpression of SP1 attenuated Cldn14 reporter activity in response to CasR signaling. SP1 is expressed in the TAL and phosphorylation was attenuated by CaSR signaling. Finally, activating mutations in the CaSR increased Cldn14 reporter activity while a dominant negative mutation in the CaSR inhibited it. Together, these studies suggest that basolateral activation of the CASR leads to increased Cldn14 expression via a PLC- stimulated p38 pathway that prevents Sp1 mediated repression.


Assuntos
Cálcio/metabolismo , Claudinas/fisiologia , Túbulos Renais/metabolismo , Receptores de Detecção de Cálcio/metabolismo , Animais , Células HEK293 , Células HeLa , Humanos , Camundongos , Camundongos Endogâmicos C57BL , Ratos , Fator de Transcrição Sp1/metabolismo , Fosfolipases Tipo C/metabolismo
7.
Pediatr Nephrol ; 37(11): 2657-2665, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-35211789

RESUMO

BACKGROUND: Autosomal recessive polycystic kidney disease is a cystic kidney disease with early onset and clinically characterized by enlarged echogenic kidneys, hypertension, varying degrees of kidney dysfunction, and liver fibrosis. It is most frequently caused by sequence variants in the PKHD1 gene, encoding fibrocystin. In more rare cases, sequence variants in DZIP1L are seen, encoding the basal body protein DAZ interacting protein 1-like protein (DZIP1L). So far, only four different DZIP1L variants have been reported. METHODS: Four children from three consanguineous families presenting with polycystic kidney disease were selected for targeted or untargeted exome sequencing. RESULTS: We identified two different, previously not reported homozygous DZIP1L sequence variants: c.193 T > C; p.(Cys65Arg), and c.216C > G; p.(Cys72Trp). Functional analyses of the c.216C > G; p.(Cys72Trp) variant indicated mislocalization of mutant DZIP1L. CONCLUSIONS: In line with published data, our results suggest a critical role of the N-terminal domain for proper protein function. Although patients with PKHD1-associated autosomal recessive polycystic kidney disease often have liver abnormalities, none of the present four patients showed any clinically relevant liver involvement. Our data demonstrate the power and efficiency of next-generation sequencing-based approaches. While DZIP1L-related polycystic kidney disease certainly represents a rare form of the disease, our results emphasize the importance of including DZIP1L in multigene panels and in the data analysis of whole-exome sequencing for cystic kidney diseases. A higher resolution version of the Graphical abstract is available as Supplementary information.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal , Rim Policístico Autossômico Recessivo , Proteínas Adaptadoras de Transdução de Sinal/análise , Proteínas Adaptadoras de Transdução de Sinal/genética , Criança , Consanguinidade , Testes Genéticos/métodos , Humanos , Mutação , Rim Policístico Autossômico Recessivo/diagnóstico , Rim Policístico Autossômico Recessivo/genética , Receptores de Superfície Celular/genética , Sequenciamento do Exoma
8.
Am J Physiol Renal Physiol ; 320(5): F897-F907, 2021 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-33818126

RESUMO

The kidneys play a crucial role in maintaining Ca2+ and Mg2+ homeostasis by regulating these minerals' reabsorption. In the thick ascending limb of Henle's loop (TAL), Ca2+ and Mg2+ are reabsorbed through the tight junctions by a shared paracellular pathway formed by claudin-16 and claudin-19. Hypercalcemia activates the Ca2+-sensing receptor (CaSR) in the TAL, causing upregulation of pore-blocking claudin-14 (CLDN14), which reduces Ca2+ and Mg2+ reabsorption from this segment. In addition, a high-Mg2+ diet is known to increase both urinary Mg2+ and Ca2+ excretion. Since Mg2+ may also activate CaSR, we aimed to investigate whether CaSR-dependent increases in CLDN14 expression also regulate urinary Mg2+ excretion in response to hypermagnesemia. Here, we show that a Mg2+-enriched diet increased urinary Mg2+ and Ca2+ excretion in mice; however, this occurred without detectable changes in renal CLDN14 expression. The administration of a high-Mg2+ diet to Cldn14-/- mice did not cause more pronounced hypermagnesemia or significantly alter urinary Mg2+ excretion. Finally, in vitro evaluation of CaSR-driven Cldn14 promoter activity in response to increasing Mg2+ concentrations revealed that Cldn14 expression only increases at supraphysiological extracellular Mg2+ levels. Together, these results suggest that CLDN14 is not involved in regulating extracellular Mg2+ balance following high dietary Mg2+ intake.NEW & NOTEWORTHY Using transgenic models and in vitro assays, this study examined the effect of Mg2+ on regulating urinary excretion of Ca2+ and Mg2+ via activation of the Ca2+-sensing receptor-claudin 14 (CLDN14) pathway. The study suggests that CLDN14 is unlikely to play a significant role in the compensatory response to hypermagnesemia.


Assuntos
Claudinas/metabolismo , Rim/metabolismo , Magnésio/metabolismo , Animais , Cálcio/metabolismo , Cálcio/urina , Claudinas/genética , Dieta , Feminino , Regulação da Expressão Gênica/efeitos dos fármacos , Regulação da Expressão Gênica/fisiologia , Magnésio/administração & dosagem , Magnésio/sangue , Magnésio/urina , Camundongos , Camundongos Knockout , Camundongos Transgênicos
9.
Am J Physiol Renal Physiol ; 320(1): F74-F86, 2021 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-33283646

RESUMO

Variations in the claudin-14 (CLDN14) gene have been linked to increased risk of hypercalciuria and kidney stone formation. However, the exact cellular localization of CLDN14 and its regulation remain to be fully delineated. To this end, we generated a novel antibody that allowed the detection of CLDN14 in paraffin-embedded renal sections. This showed CLDN14 to be detectable in the kidney only after induction of hypercalcemia in rodent models. Protein expression in the kidney is localized exclusively to the thick ascending limbs (TALs), mainly restricted to the cortical and upper medullary portion of the kidney. However, not all cells in the TALs expressed the tight junction protein. In fact, CLDN14 was primarily expressed in cells also expressing CLDN16 but devoid of CLDN10. CLDN14 appeared in very superficial apical cell domains and near cell junctions in a belt-like formation along the apical cell periphery. In transgenic mice, Cldn14 promotor-driven LacZ activity did not show complete colocalization with CLDN14 protein nor was it increased by hypercalcemia, suggesting that LacZ activity cannot be used as a marker for CLDN14 localization and regulation in this model. In conclusion, CLDN14 showed a restricted localization pattern in the apical domain of select cells of the TAL.


Assuntos
Claudinas/metabolismo , Hipercalcemia/metabolismo , Alça do Néfron/metabolismo , Animais , Claudinas/genética , Modelos Animais de Doenças , Feminino , Células HEK293 , Humanos , Hipercalcemia/genética , Hipercalcemia/patologia , Alça do Néfron/patologia , Masculino , Camundongos Endogâmicos C57BL , Camundongos Knockout , Ratos Wistar
10.
Am J Physiol Renal Physiol ; 321(2): F207-F224, 2021 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-34151590

RESUMO

Functional properties of the paracellular pathway depend critically on the set of claudins (CLDN) expressed at the tight junction. Two syndromes are causally linked to loss-of-function mutations of claudins: hypohidrosis, electrolyte imbalance, lacrimal gland dysfunction, ichthyosis, and xerostomia (HELIX) syndrome caused by genetic variations in the CLDN10 gene and familial hypomagnesemia with hypercalciuria and nephrocalcinosis caused by genetic variations in the CLDN16 or CLDN19 genes. All three genes are expressed in the kidney, particularly in the thick ascending limb (TAL). However, localization of these claudins in humans and rodents remains to be delineated in detail. We studied the segmental and subcellular expression of CLDN10, CLDN16, and CLDN19 in both paraffin-embedded and frozen kidney sections from the adult human, mouse, and rat using immunohistochemistry and immunofluorescence, respectively. Here, CLDN10 was present in a subset of medullary and cortical TAL cells, localizing to basolateral domains and tight junctions in human and rodent kidneys. Weak expression was detected at the tight junction of proximal tubular cells. CLDN16 was primarily expressed in a subset of TAL cells in the cortex and outer stripe of outer medulla, restricted to basolateral domains and tight junctional structures in both human and rodent kidneys. CLDN19 predominantly colocalized with CLDN16 in tight junctions and basolateral domains of the TAL but was also found in basolateral and junctional domains in more distal sites. CLDN10 expression at tight junctions almost never overlapped with that of CLND16 and CLDN19, consistent with distinct junctional pathways with different permeation profiles in both human and rodent kidneys.NEW & NOTEWORTHY This study used immunohistochemistry and immunofluorescence to investigate the distribution of claudin 10, 16, and 19 in the human, mouse, and rat kidney. The findings showed distinct junctional pathways in both human and rodent kidneys, supporting the existence of different permeation profiles in all species investigated.


Assuntos
Claudinas/metabolismo , Túbulos Renais/metabolismo , Animais , Epitélio/metabolismo , Humanos , Imuno-Histoquímica , Camundongos , Ratos , Junções Íntimas/metabolismo
11.
Clin Gastroenterol Hepatol ; 19(12): 2532-2540.e2, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-33007511

RESUMO

BACKGROUND AND AIMS: Patients with inflammatory bowel disease (IBD) are suggested to be at increased risk of urolithiasis, but the magnitude of risk and the impact of medical and surgical treatment on this risk remain unknown. We therefore aimed to determine overall and treatment-related risk of urolithiasis in patients with IBD in a nationwide population-based cohort study. METHODS: Using national registers, we identified all patients with IBD and all cases of urolithiasis in Denmark during 1977-2018. We obtained information on all IBD medications and surgical procedures during 1995-2018. IBD cases were matched 1:10 on age and sex to non-IBD individuals. RESULTS: In total, 2,549 (3%) of 75,236 IBD patients and 11,258 (2%) of 767,403 non-IBD individuals developed urolithiasis, resulting in a 2-fold increased risk of urolithiasis (HR, 2.27; 95% CI, 2.17-2.38) in patients with IBD. The patients were also at increased risk of repetitive urolithiasis events (RR, 1.09; 95% CI: 1.04-1.15) and had increased risk of urolithiasis prior to IBD diagnosis (OR, 1.42; 95% CI: 1.34-1.50). After IBD diagnosis, risk of urolithiasis was associated with anti-TNF therapy and surgery. CONCLUSION: Patients with IBD had a 2-fold increased risk of urolithiasis after IBD diagnosis and a 42% increased risk prior to IBD diagnosis. Risk was increased in anti-TNF exposed patients, and after surgery, suggesting that IBD severity per se and surgery, with altered intestinal absorption, increase risk of urolithiasis. Since stone formation is associated with adverse outcomes including sepsis, subpopulations of IBD patients, especially those undergoing strong immunosuppression might benefit from additional urolithiasis screening.


Assuntos
Colite Ulcerativa , Doença de Crohn , Doenças Inflamatórias Intestinais , Urolitíase , Estudos de Coortes , Dinamarca/epidemiologia , Humanos , Doenças Inflamatórias Intestinais/complicações , Doenças Inflamatórias Intestinais/epidemiologia , Inibidores do Fator de Necrose Tumoral , Urolitíase/epidemiologia
12.
Hepatology ; 72(6): 2119-2133, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-32145072

RESUMO

BACKGROUND AND AIMS: Hepatic sinusoidal cells are known actors in the fibrogenic response to injury. Activated hepatic stellate cells (HSCs), liver sinusoidal endothelial cells, and Kupffer cells are responsible for sinusoidal capillarization and perisinusoidal matrix deposition, impairing vascular exchange and heightening the risk of advanced fibrosis. While the overall pathogenesis is well understood, functional relations between cellular transitions during fibrogenesis are only beginning to be resolved. At single-cell resolution, we here explored the heterogeneity of individual cell types and dissected their transitions and crosstalk during fibrogenesis. APPROACH AND RESULTS: We applied single-cell transcriptomics to map the heterogeneity of sinusoid-associated cells in healthy and injured livers and reconstructed the single-lineage HSC trajectory from pericyte to myofibroblast. Stratifying each sinusoidal cell population by activation state, we projected shifts in sinusoidal communication upon injury. Weighted gene correlation network analysis of the HSC trajectory led to the identification of core genes whose expression proved highly predictive of advanced fibrosis in patients with nonalcoholic steatohepatitis (NASH). Among the core members of the injury-repressed gene module, we identified plasmalemma vesicle-associated protein (PLVAP) as a protein amply expressed by mouse and human HSCs. PLVAP expression was suppressed in activated HSCs upon injury and may hence define hitherto unknown roles for HSCs in the regulation of microcirculatory exchange and its breakdown in chronic liver disease. CONCLUSIONS: Our study offers a single-cell resolved account of drug-induced injury of the mammalian liver and identifies key genes that may serve important roles in sinusoidal integrity and as markers of advanced fibrosis in human NASH.


Assuntos
Doença Hepática Induzida por Substâncias e Drogas/patologia , Células Endoteliais/patologia , Redes Reguladoras de Genes , Cirrose Hepática/genética , Hepatopatia Gordurosa não Alcoólica/patologia , Animais , Biópsia , Capilares/citologia , Capilares/patologia , Tetracloreto de Carbono/administração & dosagem , Tetracloreto de Carbono/toxicidade , Doença Hepática Induzida por Substâncias e Drogas/etiologia , Modelos Animais de Doenças , Endotélio Vascular/citologia , Endotélio Vascular/patologia , Feminino , Veias Hepáticas/citologia , Veias Hepáticas/patologia , Humanos , Fígado/irrigação sanguínea , Fígado/patologia , Cirrose Hepática/patologia , Proteínas de Membrana/genética , Camundongos , Camundongos Transgênicos , Análise de Sequência com Séries de Oligonucleotídeos , RNA-Seq , Análise de Célula Única
13.
Kidney Int ; 97(5): 852-854, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-32331595

RESUMO

Nearly a century ago it was discovered that metabolic acidosis promotes hypercalciuria. Studies have described intrarenal and extrarenal mechanisms underlying calcium wasting in acidosis, in part by altering bone metabolism but also by directly inhibiting renal calcium transport. In this issue of Kidney International, Imenez Silva et al. report that ablation of the pH-sensing receptor ovarian cancer G protein-coupled receptor 1 in a murine model led to Na+/H+-exchanger isoform 3 redistribution in the kidney and dampens the hypercalciuric response to metabolic acidosis.


Assuntos
Acidose , Neoplasias Ovarianas , Animais , Cálcio , Feminino , Humanos , Concentração de Íons de Hidrogênio , Hipercalciúria , Camundongos , Prótons , Receptores Acoplados a Proteínas G
14.
J Am Soc Nephrol ; 30(8): 1454-1470, 2019 08.
Artigo em Inglês | MEDLINE | ID: mdl-31253651

RESUMO

BACKGROUND: The NaCl cotransporter NCC in the kidney distal convoluted tubule (DCT) regulates urinary NaCl excretion and BP. Aldosterone increases NaCl reabsorption via NCC over the long-term by altering gene expression. But the acute effects of aldosterone in the DCT are less well understood. METHODS: Proteomics, bioinformatics, and cell biology approaches were combined with animal models and gene-targeted mice. RESULTS: Aldosterone significantly increases NCC activity within minutes in vivo or ex vivo. These effects were independent of transcription and translation, but were absent in the presence of high potassium. In vitro, aldosterone rapidly increased intracellular cAMP and inositol phosphate accumulation, and altered phosphorylation of various kinases/kinase substrates within the MAPK/ERK, PI3K/AKT, and cAMP/PKA pathways. Inhibiting GPR30, a membrane-associated receptor, limited aldosterone's effects on NCC activity ex vivo, and NCC phosphorylation was reduced in GPR30 knockout mice. Phosphoproteomics, network analysis, and in vitro studies determined that aldosterone activates EGFR-dependent signaling. The EGFR immunolocalized to the DCT and EGFR tyrosine kinase inhibition decreased NCC activity ex vivo and in vivo. CONCLUSIONS: Aldosterone acutely activates NCC to modulate renal NaCl excretion.


Assuntos
Aldosterona/farmacologia , Túbulos Renais Distais/metabolismo , Transdução de Sinais , Tiazidas/farmacologia , Aldosterona/metabolismo , Animais , Pressão Sanguínea , Cálcio/metabolismo , Linhagem Celular , Membrana Celular/metabolismo , Biologia Computacional , AMP Cíclico/metabolismo , Receptores ErbB/metabolismo , Síndrome de Gitelman/metabolismo , Rim/metabolismo , Masculino , Camundongos , Mineralocorticoides/metabolismo , Fosforilação , Proteômica , Receptores de Estrogênio/metabolismo , Receptores Acoplados a Proteínas G/metabolismo , Cloreto de Sódio/metabolismo , Membro 3 da Família 12 de Carreador de Soluto/metabolismo
15.
Int J Mol Sci ; 21(6)2020 Mar 18.
Artigo em Inglês | MEDLINE | ID: mdl-32197346

RESUMO

The renal proximal tubule (PT) is responsible for the reabsorption of approximately 65% of filtered calcium, primarily via a paracellular pathway. However, which protein(s) contribute this paracellular calcium pore is not known. The claudin family of tight junction proteins confers permeability properties to an epithelium. Claudin-12 is expressed in the kidney and when overexpressed in cell culture contributes paracellular calcium permeability (PCa). We therefore examined claudin-12 renal localization and its contribution to tubular paracellular calcium permeability. Claudin-12 null mice (KO) were generated by replacing the single coding exon with ß-galactosidase from Escherichia coli. X-gal staining revealed that claudin-12 promoter activity colocalized with aquaporin-1, consistent with the expression in the PT. PTs were microperfused ex vivo and PCa was measured. PCa in PTs from KO mice was significantly reduced compared with WT mice. However, urinary calcium excretion was not different between genotypes, including those on different calcium containing diets. To assess downstream compensation, we examined renal mRNA expression. Claudin-14 expression, a blocker of PCa in the thick ascending limb (TAL), was reduced in the kidney of KO animals. Thus, claudin-12 is expressed in the PT, where it confers paracellular calcium permeability. In the absence of claudin-12, reduced claudin-14 expression in the TAL may compensate for reduced PT calcium reabsorption.


Assuntos
Cálcio/metabolismo , Claudinas/deficiência , Túbulos Renais Proximais/metabolismo , Animais , Claudinas/biossíntese , Claudinas/metabolismo , Regulação da Expressão Gênica , Camundongos , Camundongos Knockout , Permeabilidade
16.
Am J Physiol Renal Physiol ; 317(3): F560-F571, 2019 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-31241991

RESUMO

Human urinary extracellular vesicles (uEVs) contain proteins from all nephron segments. An assumption for years has been that uEVs might provide a noninvasive liquid biopsy that reflect physiological regulation of transporter protein expression in humans. We hypothesized that protein abundance in human kidney tissue and uEVs are directly related and tested this in paired collections of nephrectomy tissue and urine sample from 12 patients. Kidney tissue was fractioned into total kidney protein, crude membrane (plasma membrane and large intracellular vesicles)-enriched, and intracellular vesicle-enriched fractions as well as sections for immunolabeling. uEVs were isolated from spot urine samples. Antibodies were used to quantify six segment-specific proteins [proximal tubule-expressed Na+-phosphate cotransporters (NaPi-2a), thick ascending limb-expressed Tamm-Horsfall protein and renal outer medullary K+ channels, distal convoluted tubule-expressed NaCl cotransporters, intercalated cell-expressed V-type H+-ATPase subunit G3 (ATP6V1G3), and principal cell-expressed aquaporin 2] and three uEV markers (exosomal CD63, microvesicle marker vesicle-associated membrane protein 3, and ß-actin) in each fraction. By Western blot analysis and immunofluorescence labeling, we found significant positive correlations between the abundance of CD63, NaCl cotransporters, aquaporin 2, and ATP6V1G3, respectively, within the different kidney-derived fractions. We detected all nine proteins in uEVs, but their level did not correlate with kidney tissue protein abundance. uEV protein levels showed higher interpatient variability than kidney-derived fractions, indicating that factors, besides kidney protein abundance, contribute to the uEV protein level. Our data suggest that, in a random sample of nephrectomy patients, uEV protein level is not a predictor of kidney protein abundance.


Assuntos
Células Epiteliais/química , Vesículas Extracelulares/química , Túbulos Renais/química , Proteínas de Membrana Transportadoras/urina , Biomarcadores/urina , Humanos , Túbulos Renais/cirurgia , Nefrectomia
17.
Am J Physiol Renal Physiol ; 317(6): F1549-F1562, 2019 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-31566427

RESUMO

The present study tested the hypotheses that nephrotic syndrome (NS) leads to renal K+ loss because of augmented epithelial Na+ channel (ENaC) activity followed by downregulation of renal K+ secretory pathways by suppressed aldosterone. The hypotheses were addressed by determining K+ balance and kidney abundance of K+ and Na+ transporter proteins in puromycin aminonucleoside (PAN)-induced rat nephrosis. The effects of amiloride and angiotensin II type 1 receptor and mineralocorticoid receptor (MR) antagonists were tested. Glucocorticoid-dependent MR activation was tested by suppression of endogenous glucocorticoid with dexamethasone. Urine and plasma samples were obtained from pediatric patients with NS in acute and remission phases. PAN-induced nephrotic rats had ENaC-dependent Na+ retention and displayed lower renal K+ excretion but elevated intestinal K+ secretion that resulted in less cumulated K+ in NS. Aldosterone was suppressed at day 8. The NS-associated changes in intestinal, but not renal, K+ handling responded to suppression of corticosterone, whereas angiotensin II type 1 receptor and MR blockers and amiloride had no effect on urine K+ excretion during NS. In PAN-induced nephrosis, kidney protein abundance of the renal outer medullary K+ channel and γ-ENaC were unchanged, whereas the Na+-Cl- cotransporter was suppressed and Na+-K+-ATPase increased. Pediatric patients with acute NS displayed suppressed urine Na+-to-K+ ratios compared with remission and elevated plasma K+ concentration, whereas fractional K+ excretion did not differ. Acute NS is associated with less cumulated K+ in a rat model, whereas patients with acute NS have elevated plasma K+ and normal renal fractional K+ excretion. In NS rats, K+ balance is not coupled to ENaC activity but results from opposite changes in renal and fecal K+ excretion with a contribution from corticosteroid MR-driven colonic secretion.


Assuntos
Síndrome Nefrótica/metabolismo , Potássio/metabolismo , Adolescente , Aldosterona/metabolismo , Amilorida/farmacologia , Bloqueadores do Receptor Tipo 2 de Angiotensina II/farmacologia , Animais , Criança , Pré-Escolar , Diuréticos , Regulação para Baixo , Canais Epiteliais de Sódio/metabolismo , Humanos , Lactente , Rim/efeitos dos fármacos , Rim/metabolismo , Masculino , Antagonistas de Receptores de Mineralocorticoides/farmacologia , Síndrome Nefrótica/sangue , Síndrome Nefrótica/urina , Potássio/sangue , Potássio/urina , Canais de Potássio/metabolismo , Puromicina Aminonucleosídeo , Ratos , Ratos Sprague-Dawley , ATPase Trocadora de Sódio-Potássio/metabolismo
18.
Am J Physiol Renal Physiol ; 315(3): F547-F557, 2018 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-29767556

RESUMO

Obstruction of urine flow at the level of the pelvo-ureteric junction (UPJO) and subsequent development of hydronephrosis is one of the most common congenital renal malformations. UPJO is associated with development of salt-sensitive hypertension, which is set by the obstructed kidney, and with a stimulated renin-angiotensin-aldosterone system (RAAS) in rodent models. This study aimed at investigating the hypothesis that 1) in pediatric patients with UPJO the RAAS is activated before surgical relief of the obstruction; 2) in rats with UPJO the RAAS activation is reflected by increased abundance of renal aldosterone-stimulated Na transporters; and 3) the injured UPJO kidney allows aberrant filtration of plasminogen, leading to proteolytic activation of the epithelial Na channel γ-subunit (γ-ENaC). Hydronephrosis resulting from UPJO in pediatric patients and rats was associated with increased urinary plasminogen-to-creatinine ratio. In pediatric patients, plasma renin, angiotensin II, urine and plasma aldosterone, and urine soluble prorenin receptor did not differ significantly before or after surgery, or compared with controls. Increased plasmin-to-plasminogen ratio was seen in UPJO rats. Intact γ-ENaC abundance was not changed in UPJO kidney, whereas low-molecular cleavage product abundance increased. The Na-Cl cotransporter displayed significantly lower abundance in the UPJO kidney compared with the nonobstructed contralateral kidney. The Na-K-ATPase α-subunit was unaltered. Treatment with an angiotensin-converting enzyme inhibitor (8 days, captopril) significantly lowered blood pressure in UPJO rats. It is concluded that the RAAS contributes to hypertension following partial obstruction of urine flow at the pelvo-ureteric junction with potential contribution from proteolytic activation of ENaC.


Assuntos
Canais Epiteliais de Sódio/metabolismo , Fibrinolisina/urina , Hidronefrose/urina , Hipertensão/urina , Rim/metabolismo , Sódio/urina , Albuminúria/etiologia , Albuminúria/fisiopatologia , Albuminúria/urina , Inibidores da Enzima Conversora de Angiotensina/farmacologia , Animais , Anti-Hipertensivos/farmacologia , Pressão Sanguínea/efeitos dos fármacos , Captopril/farmacologia , Estudos de Casos e Controles , Modelos Animais de Doenças , Humanos , Hidronefrose/etiologia , Hidronefrose/fisiopatologia , Hipertensão/tratamento farmacológico , Hipertensão/etiologia , Hipertensão/fisiopatologia , Rim/efeitos dos fármacos , Masculino , Ratos Sprague-Dawley , Sistema Renina-Angiotensina/efeitos dos fármacos , Membro 3 da Família 12 de Carreador de Soluto/metabolismo , Regulação para Cima , Obstrução Ureteral/complicações
19.
Am J Physiol Renal Physiol ; 315(3): F429-F444, 2018 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-29993276

RESUMO

The vacuolar-type H+-ATPase B1 subunit is heavily expressed in the intercalated cells of the collecting system, where it contributes to H+ transport, but has also been described in other segments of the renal tubule. This study aimed to determine the localization of the B1 subunit of the vacuolar-type H+-ATPase in the early distal nephron, encompassing thick ascending limbs (TAL) and distal convoluted tubules (DCT), in human kidney and determine whether the localization differs between rodents and humans. Antibodies directed against the H+-ATPase B1 subunit were used to determine its localization in paraffin-embedded formalin-fixed mouse, rat, and human kidneys by light microscopy and in sections of Lowicryl-embedded rat kidneys by electron microscopy. Abundant H+-ATPase B1 subunit immunoreactivity was observed in the human kidney. As expected, intercalated cells showed the strongest signal, but significant signal was also observed in apical membrane domains of the distal nephron, including TAL, macula densa, and DCT. In mouse and rat, H+-ATPase B1 subunit expression could also be detected in apical membrane domains of these segments. In rat, electron microscopy revealed that the H+-ATPase B1 subunit was located in the apical membrane. Furthermore, the H+-ATPase B1 subunit colocalized with other H+-ATPase subunits in the TAL and DCT. In conclusion, the B1 subunit is expressed in the early distal nephron. The physiological importance of H+-ATPase expression in these segments remains to be delineated in detail. The phenotype of disease-causing mutations in the B1 subunit may also relate to its presence in the TAL and DCT.


Assuntos
Túbulos Renais Distais/enzimologia , ATPases Vacuolares Próton-Translocadoras/metabolismo , Animais , Polaridade Celular , Humanos , Imuno-Histoquímica , Túbulos Renais Distais/ultraestrutura , Camundongos Knockout , Microscopia Eletrônica de Transmissão , Especificidade da Espécie , ATPases Vacuolares Próton-Translocadoras/deficiência , ATPases Vacuolares Próton-Translocadoras/genética
20.
Hum Mutat ; 38(6): 649-657, 2017 06.
Artigo em Inglês | MEDLINE | ID: mdl-28229505

RESUMO

The greatest risk factor for kidney stones is hypercalciuria, the etiology of which is largely unknown. A recent genome-wide association study (GWAS) linked hypercalciuria and kidney stones to a claudin-14 (CLDN14) risk haplotype. However, the underlying molecular mechanism was not delineated. Recently, renal CLDN14 expression was found to increase in response to increased plasma calcium, thereby inducing calciuria. We hypothesized therefore that some children with hypercalciuria and kidney stones harbor a CLDN14 variant that inappropriately increases gene expression. To test this hypothesis, we sequenced the CLDN14 risk haplotype in a cohort of children with idiopathic hypercalciuria and kidney stones. An intronic SNP was more frequent in affected children. Dual luciferase and cell-based assays demonstrated increased reporter or CLDN14 expression when this polymorphism was introduced. In silico studies predicted the SNP introduced a novel insulinoma-associated 1 (INSM1) transcription factor binding site. Consistent with this, repeating the dual luciferase assay in the presence of INSM1 further increased reporter expression. Our data suggest that children with the INSM1 binding site within the CLDN14 risk haplotype have a higher likelihood of hypercalciuria and kidney stones. Enhanced CLDN14 expression may play a role in the pathophysiology of their hypercalciuria.


Assuntos
Claudinas/genética , Hipercalciúria/genética , Cálculos Renais/genética , Proteínas Repressoras/genética , Adolescente , Sítios de Ligação/genética , Cálcio/sangue , Criança , Pré-Escolar , Feminino , Regulação da Expressão Gênica/genética , Predisposição Genética para Doença , Haplótipos , Humanos , Hipercalciúria/complicações , Hipercalciúria/patologia , Lactente , Cálculos Renais/complicações , Cálculos Renais/patologia , Masculino , Polimorfismo de Nucleotídeo Único/genética , Ligação Proteica/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA