Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Nanotechnology ; 27(46): 465301, 2016 Nov 18.
Artigo em Inglês | MEDLINE | ID: mdl-27736809

RESUMO

The response of polystyrene-block-poly(dimethylsiloxane) (PS-b-PDMS) thin films to UV exposure during solvent vapor annealing is described, in order to improve their applicability in nanolithography and nanofabrication. Two BCPs were examined, one with the PS block as majority (f PS = 68%, M n = 53 kg mol-1), the other with PDMS block as majority (f PDMS = 67%, M n = 44 kg mol-1). A 5 min UV irradiation was applied during solvent vapor annealing which led to both partial crosslinking of the polymer and a small increase in the temperature of the annealing chamber. This approach was effective for improving the correlation length of the self-assembled microdomain arrays and in limiting subsequent flow of the PDMS in the PDMS-majority BCP to preserve the post-anneal morphology. Ordering and orientation of microdomains were controlled by directed self-assembly of the BCPs in trench substrates. Highly-ordered perpendicular nanochannel arrays were obtained in the PDMS-majority BCP.

2.
Nanotechnology ; 26(41): 415401, 2015 Oct 16.
Artigo em Inglês | MEDLINE | ID: mdl-26404046

RESUMO

This paper demonstrates an optimized fabrication of amorphous Ru nanoparticles through annealing at various temperatures ranging from 150 to 700 °C, which are used as water oxidation catalyst for effective electrochemical water splitting under a low overpotential of less than 300 mV. The amorphous Ru nanoparticles with short-range ordered structure exhibit an optimal and stable electrocatalytic activity after annealing at 250 °C. Interestingly, a small quantity of such Ru nanoparticles in a thin film on fluorine-doped tin oxide glass is also effectively driven by a conventional crystalline silicon solar cell that has excellent capability for harvesting visible light. Remarkably, it achieves an overall solar-to-hydrogen efficiency of 11.3% in acidic electrolyte.

3.
Nanotechnology ; 24(50): 505201, 2013 Dec 20.
Artigo em Inglês | MEDLINE | ID: mdl-24270574

RESUMO

Despite recent progress in the fabrication of magnesium fluoride (MgF2) anti-reflective coatings (ARCs), simple, effective and scalable sol-gel fabrication of MgF2 ARCs for large-area glass substrates has prospective application in various optoelectronic devices. In this paper, a polymer-based sol-gel route was devised to fabricate highly uniform and porous MgF2 ARCs on large-area glass substrates. A sol-gel precursor made of polyvinyl acetate and magnesium trifluoroacetate assisted in the formation of uniformly mesoporous MgF2 ARCs on glass substrates, leading to the attainment of a refractive index of ~1.23. Systematic optimization of the thickness of the ARC in the sub-wavelength regime led to achieving ~99.4% transmittance in the case of the porous MgF2 ARC glass. Precise control of the thickness of porous MgF2 ARC glass also resulted in a mere ~0.1% reflection, virtually eliminating reflection off the glass surface at the target wavelength. Further manipulation of the thickness of the ARC on either side of the glass substrate led to the fabrication of relatively broadband, porous MgF2 ARC glass.

4.
Nanotechnology ; 23(31): 315304, 2012 Aug 10.
Artigo em Inglês | MEDLINE | ID: mdl-22802208

RESUMO

Nanostructuring of Al2O3 is predominantly achieved by the anodization of aluminum film and is limited to obtaining porous anodized aluminum oxide (AAO). One of the main restrictions in developing approaches for direct fabrication of various types of Al2O3 patterns, such as lines, pillars, holes, etc, is the lack of a processable aluminum-containing resist. In this paper, we demonstrate a stable precursor prepared by reacting aluminum tri-sec-butoxide with 2-(methacryloyloxy)ethyl acetoacetate, a chelating monomer, which can be used for large area direct nanoimprint lithography of Al2O3. Chelation in the precursor makes it stable against hydrolysis whilst the presence of a reactive methacrylate group renders it polymerizable. The precursor was mixed with a cross-linker and their in situ thermal free-radical co-polymerization during nanoimprinting rigidly shaped the patterns, trapped the metal atoms, reduced the surface energy and strengthened the structures, thereby giving a ~100% yield after demolding. The imprinted structures were heat-treated, leading to the loss of organics and their subsequent shrinkage. Amorphous Al2O3 patterns with line-widths as small as 17 nm were obtained. Our process utilizes the advantages of sol-gel and methacrylate routes for imprinting and at the same time alleviates the disadvantages associated with both these methods. With these benefits, the chelating monomer route may be the harbinger of the universal scheme for direct nanoimprinting of metal oxides.

5.
ACS Nano ; 9(6): 6262-70, 2015 Jun 23.
Artigo em Inglês | MEDLINE | ID: mdl-26042335

RESUMO

The photocatalytic self-cleaning characteristics of titania facilitate the fabrication of reuseable templates for protein nanopatterning. Titania nanostructures were fabricated over square centimeter areas by interferometric lithography (IL) and nanoimprint lithography (NIL). With the use of a Lloyd's mirror two-beam interferometer, self-assembled monolayers of alkylphosphonates adsorbed on the native oxide of a Ti film were patterned by photocatalytic nanolithography. In regions exposed to a maximum in the interferogram, the monolayer was removed by photocatalytic oxidation. In regions exposed to an intensity minimum, the monolayer remained intact. After exposure, the sample was etched in piranha solution to yield Ti nanostructures with widths as small as 30 nm. NIL was performed by using a silicon stamp to imprint a spin-cast film of titanium dioxide resin; after calcination and reactive ion etching, TiO2 nanopillars were formed. For both fabrication techniques, subsequent adsorption of an oligo(ethylene glycol) functionalized trichlorosilane yielded an entirely passive, protein-resistant surface. Near-UV exposure caused removal of this protein-resistant film from the titania regions by photocatalytic degradation, leaving the passivating silane film intact on the silicon dioxide regions. Proteins labeled with fluorescent dyes were adsorbed to the titanium dioxide regions, yielding nanopatterns with bright fluorescence. Subsequent near-UV irradiation of the samples removed the protein from the titanium dioxide nanostructures by photocatalytic degradation facilitating the adsorption of a different protein. The process was repeated multiple times. These simple methods appear to yield durable, reuseable samples that may be of value to laboratories that require nanostructured biological interfaces but do not have access to the infrastructure required for nanofabrication.


Assuntos
Nanoestruturas/química , Nanotecnologia , Proteínas/análise , Proteínas/química , Titânio/química
6.
ACS Macro Lett ; 4(5): 500-504, 2015 May 19.
Artigo em Inglês | MEDLINE | ID: mdl-35596284

RESUMO

A combined thermal and solvent vapor annealing process for block copolymer self-assembly is demonstrated. Films of cylinder-forming poly(styrene-b-dimethylsiloxane) (SD45, 45.5 kg/mol, fPDMS = 31%) were preheated for 2 min above the glass transition temperature of both blocks, followed by immediate introduction into a chamber containing room temperature saturated vapors of toluene and n-heptane. After quenching in air, microdomains had better order than those obtained from thermal or solvent annealing alone. The short time during which the film is both heated and exposed to solvent vapor played an important role in determining the final morphology.

7.
ACS Nano ; 9(2): 1305-14, 2015 Feb 24.
Artigo em Inglês | MEDLINE | ID: mdl-25634665

RESUMO

Moth's eye inspired multiscale ommatidial arrays offer multifunctional properties of great significance in optoelectronic devices. However, a major challenge remains in fabricating these arrays on large-area substrates using a simple and scalable technique. Here we present the fabrication of these multiscale ommatidial arrays over large areas by a distinct approach called sacrificial layer mediated nanoimprinting, which involves nanoimprinting aided by a sacrificial layer. The fabricated arrays exhibited excellent pattern uniformity over the entire patterned area. Optimum dimensions of the multiscale ommatidial arrays determined by the finite-difference time domain simulations served as the design parameters for replicating the arrays on glass. A broadband suppression of reflectance to a minimum of ∼1.4% and omnidirectional antireflection for highly oblique angles of incidence up to 70° were achieved. In addition, superhydrophobicity and superior antifogging characteristics enabled the retention of optical properties even in wet and humid conditions, suggesting reliable optical performance in practical outdoor conditions. We anticipate that these properties could potentially enhance the performance of optoelectronic devices and minimize the influence of in-service conditions. Additionally, as our technique is solely nanoimprinting-based, it may enable scalable and high-throughput fabrication of multiscale ommatidial arrays.


Assuntos
Biomimética/métodos , Nanotecnologia/métodos , Fenômenos Ópticos , Animais , Olho , Umidade , Interações Hidrofóbicas e Hidrofílicas , Mariposas , Cimento de Policarboxilato/química
8.
ACS Appl Mater Interfaces ; 5(5): 1527-32, 2013 Mar 13.
Artigo em Inglês | MEDLINE | ID: mdl-23427896

RESUMO

Rice-shaped TiO2 nanostructures are fabricated by electrospinning for creating a robust superamphiphobic coating on glass substrates. The as-fabricated TiO2 nanostructures (sintered at 500 °C) are superhydrophilic in nature which upon silanization turn into superamphiphobic surface with surface contact angle (SCA) values achieved using water (surface tension, γ = 72.1 mN/m) and hexadecane (surface tension, γ = 27.5 mN/m) being 166° and 138.5°, respectively. The contact angle hysteresis for the droplet of water and hexadecane are measured to be 2 and 12°, respectively. Thus, we have successfully fabricated superior self-cleaning coatings that possess exceptional superamphiphobic property by employing a simple, cost-effective, and scalable technique called electrospinning. Furthermore, the coating showed good mechanical and thermal stability with strong adherence to glass surface, thus revealing the potential for real applications.

9.
ACS Appl Mater Interfaces ; 5(24): 13113-23, 2013 Dec 26.
Artigo em Inglês | MEDLINE | ID: mdl-24281700

RESUMO

Step-and-flash imprint lithography (S-FIL) is a wafer-scale, high-resolution nanoimprint technique capable of expansion of nanoscale patterns via serial patterning of imprint fields. While S-FIL patterning of organic resins is well known, patterning of metal-organic resins followed by calcination to form structured oxide films remains relatively unexplored. However, with calcination shrinkage, there is tremendous potential utility in easing accessibility of arbitrary nanostructures at 20 nm resolution and below. However, barriers to commercial adoption exist due to difficulties in formulating polymerizable oxide precursors with good dispensability, long shelf life, and resistance to auto-homopolymerization. Here we propose a solution to these issues in the form of a versatile resin formulation scheme that is applicable to a host of functional oxides (Al2O3, HfO2, TiO2, ZrO2, Ta2O5, and Nb2O5). This scheme utilizes a reaction of metal alkoxides with 2-(methacryloyloxy)ethyl acetoacetate (MAEAA), a polymerizable chelating agent. Formation of these inorganic coordination complexes enables remarkable resistance to auto-homopolymerization, greatly improving dispensability and shelf life, thus enabling full scale-up of this facile nanofabrication approach. Results include successively imprinted fields consisting of 100 nm linewidth gratings. Isothermal calcination of these structures resulted in corresponding shrinkage of 75-80% without loss of mechanical integrity or aspect ratio, resulting in 20 nm linewidth oxide nanostructures.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA