Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
J Am Chem Soc ; 146(9): 6072-6083, 2024 Mar 06.
Artigo em Inglês | MEDLINE | ID: mdl-38400985

RESUMO

Diamine-appended Mg2(dobpdc) (dobpdc4- = 4,4'-dioxidobiphenyl-3,3'-dicarboxylate) metal-organic frameworks are promising candidates for carbon capture that exhibit exceptional selectivities and high capacities for CO2. To date, CO2 uptake in these materials has been shown to occur predominantly via a chemisorption mechanism involving CO2 insertion at the amine-appended metal sites, a mechanism that limits the capacity of the material to ∼1 equiv of CO2 per diamine. Herein, we report a new framework, pip2-Mg2(dobpdc) (pip2 = 1-(2-aminoethyl)piperidine), that exhibits two-step CO2 uptake and achieves an unusually high CO2 capacity approaching 1.5 CO2 per diamine at saturation. Analysis of variable-pressure CO2 uptake in the material using solid-state nuclear magnetic resonance (NMR) spectroscopy and in situ diffuse reflectance infrared Fourier transform spectroscopy (DRIFTS) reveals that pip2-Mg2(dobpdc) captures CO2 via an unprecedented mechanism involving the initial insertion of CO2 to form ammonium carbamate chains at half of the sites in the material, followed by tandem cooperative chemisorption and physisorption. Powder X-ray diffraction analysis, supported by van der Waals-corrected density functional theory, reveals that physisorbed CO2 occupies a pocket formed by adjacent ammonium carbamate chains and the linker. Based on breakthrough and extended cycling experiments, pip2-Mg2(dobpdc) exhibits exceptional performance for CO2 capture under conditions relevant to the separation of CO2 from landfill gas. More broadly, these results highlight new opportunities for the fundamental design of diamine-Mg2(dobpdc) materials with even higher capacities than those predicted based on CO2 chemisorption alone.

2.
J Am Chem Soc ; 145(46): 25233-25241, 2023 Nov 22.
Artigo em Inglês | MEDLINE | ID: mdl-37956363

RESUMO

Materials capable of selectively adsorbing or releasing water can enable valuable applications ranging from efficient humidity and temperature control to the direct atmospheric capture of potable water. Despite recent progress in employing metal-organic frameworks (MOFs) as privileged water sorbents, developing a readily accessible, water-stable MOF platform that can be systematically modified for high water uptake at low relative humidity remains a significant challenge. We herein report the development of a tunable MOF that efficiently captures atmospheric water (up to 0.78 g water/g MOF) across a range of uptake humidity (27-45%) employing a readily accessible Zn bibenzotriazolate MOF, CFA-1 ([Zn5(OAc)4(bibta)3], H2bibta = 1H,1H'-5,5'-bibenzo[d][1,2,3]triazole), as a base for subsequent diversification. Controlling the metal identity (zinc, nickel) and coordinating nonstructural anion (acetate, chloride) via postsynthetic exchange modulates the relative humidity of uptake, facilitating the use of a single MOF scaffold for a diverse range of potential water sorption applications. We further present a fundamental theory dictating how continuous variation of the pore environment affects the relative humidity of uptake. Exchange of substituents preserves capacity for water sorption, increases hydrolytic stability (with 5.7% loss in working capacity over 450 water adsorption-desorption cycles for the nickel-chloride-rich framework), and enables continuous modulation for the relative humidity of pore condensation. This combination of stability and tunability within a synthetically accessible framework renders Ni-incorporated M5X4bibta3 promising materials for practical water sorption applications.

3.
J Am Chem Soc ; 145(31): 17151-17163, 2023 Aug 09.
Artigo em Inglês | MEDLINE | ID: mdl-37493594

RESUMO

Diamine-appended Mg2(dobpdc) (dobpdc4- = 4,4'-dioxidobiphenyl-3,3'-dicarboxylate) metal-organic frameworks have emerged as promising candidates for carbon capture owing to their exceptional CO2 selectivities, high separation capacities, and step-shaped adsorption profiles, which arise from a unique cooperative adsorption mechanism resulting in the formation of ammonium carbamate chains. Materials appended with primary,secondary-diamines featuring bulky substituents, in particular, exhibit excellent stabilities and CO2 adsorption properties. However, these frameworks display double-step adsorption behavior arising from steric repulsion between ammonium carbamates, which ultimately results in increased regeneration energies. Herein, we report frameworks of the type diamine-Mg2(olz) (olz4- = (E)-5,5'-(diazene-1,2-diyl)bis(2-oxidobenzoate)) that feature diverse diamines with bulky substituents and display desirable single-step CO2 adsorption across a wide range of pressures and temperatures. Analysis of CO2 adsorption data reveals that the basicity of the pore-dwelling amine─in addition to its steric bulk─is an important factor influencing adsorption step pressure; furthermore, the amine steric bulk is found to be inversely correlated with the degree of cooperativity in CO2 uptake. One material, ee-2-Mg2(olz) (ee-2 = N,N-diethylethylenediamine), adsorbs >90% of the CO2 from a simulated coal flue stream and exhibits exceptional thermal and oxidative stability over the course of extensive adsorption/desorption cycling, placing it among top-performing adsorbents to date for CO2 capture from a coal flue gas. Spectroscopic characterization and van der Waals-corrected density functional theory calculations indicate that diamine-Mg2(olz) materials capture CO2 via the formation of ammonium carbamate chains. These results point more broadly to the opportunity for fundamentally advancing materials in this class through judicious design.

4.
J Am Chem Soc ; 143(37): 15258-15270, 2021 09 22.
Artigo em Inglês | MEDLINE | ID: mdl-34491725

RESUMO

Carbon capture at fossil fuel-fired power plants is a critical strategy to mitigate anthropogenic contributions to global warming, but widespread deployment of this technology is hindered by a lack of energy-efficient materials that can be optimized for CO2 capture from a specific flue gas. As a result of their tunable, step-shaped CO2 adsorption profiles, diamine-functionalized metal-organic frameworks (MOFs) of the form diamine-Mg2(dobpdc) (dobpdc4- = 4,4'-dioxidobiphenyl-3,3'-dicarboxylate) are among the most promising materials for carbon capture applications. Here, we present a detailed investigation of dmen-Mg2(dobpdc) (dmen = 1,2-diamino-2-methylpropane), one of only two MOFs with an adsorption step near the optimal pressure for CO2 capture from coal flue gas. While prior characterization suggested that this material only adsorbs CO2 to half capacity (0.5 CO2 per diamine) at 1 bar, we show that the half-capacity state is actually a metastable intermediate. Under appropriate conditions, the MOF adsorbs CO2 to full capacity, but conversion from the half-capacity structure happens on a very slow time scale, rendering it inaccessible in traditional adsorption measurements. Data from solid-state magic angle spinning nuclear magnetic resonance spectroscopy, coupled with van der Waals-corrected density functional theory, indicate that ammonium carbamate chains formed at half capacity and full capacity adopt opposing configurations, and the need to convert between these states likely dictates the sluggish post-half-capacity uptake. By use of the more symmetric parent framework Mg2(pc-dobpdc) (pc-dobpdc4- = 3,3'-dioxidobiphenyl-4,4'-dicarboxylate), the metastable trap can be avoided and the full CO2 capacity of dmen-Mg2(pc-dobpdc) accessed under conditions relevant for carbon capture from coal-fired power plants.


Assuntos
Poluentes Atmosféricos/química , Dióxido de Carbono/química , Diaminas/química , Estruturas Metalorgânicas/química , Adsorção , Mudança Climática , Simulação por Computador , Teoria da Densidade Funcional , Modelos Moleculares
5.
J Am Chem Soc ; 140(51): 18016-18031, 2018 12 26.
Artigo em Inglês | MEDLINE | ID: mdl-30501180

RESUMO

The widespread deployment of carbon capture and sequestration as a climate change mitigation strategy could be facilitated by the development of more energy-efficient adsorbents. Diamine-appended metal-organic frameworks of the type diamine-M2(dobpdc) (M = Mg, Mn, Fe, Co, Ni, Zn; dobpdc4- = 4,4'-dioxidobiphenyl-3,3'-dicarboxylate) have shown promise for carbon-capture applications, although questions remain regarding the molecular mechanisms of CO2 uptake in these materials. Here we leverage the crystallinity and tunability of this class of frameworks to perform a comprehensive study of CO2 chemisorption. Using multinuclear nuclear magnetic resonance (NMR) spectroscopy experiments and van-der-Waals-corrected density functional theory (DFT) calculations for 13 diamine-M2(dobpdc) variants, we demonstrate that the canonical CO2 chemisorption products, ammonium carbamate chains and carbamic acid pairs, can be readily distinguished and that ammonium carbamate chain formation dominates for diamine-Mg2(dobpdc) materials. In addition, we elucidate a new chemisorption mechanism in the material dmpn-Mg2(dobpdc) (dmpn = 2,2-dimethyl-1,3-diaminopropane), which involves the formation of a 1:1 mixture of ammonium carbamate and carbamic acid and accounts for the unusual adsorption properties of this material. Finally, we show that the presence of water plays an important role in directing the mechanisms for CO2 uptake in diamine-M2(dobpdc) materials. Overall, our combined NMR and DFT approach enables a thorough depiction and understanding of CO2 adsorption within diamine-M2(dobpdc) compounds, which may aid similar studies in other amine-functionalized adsorbents in the future.


Assuntos
Dióxido de Carbono/química , Diaminas/química , Estruturas Metalorgânicas/química , Adsorção , Carbamatos/química , Teoria da Densidade Funcional , Modelos Químicos , Temperatura , Água/química
6.
Pac Symp Biocomput ; 26: 107-118, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33691009

RESUMO

How has the focus of research papers on a given disease changed over time? Identifying the papers at the cusps of change can help highlight the emergence of a new topic or a change in the direction of research. We present a generally applicable unsupervised approach to this question based on semantic changepoints within a given collection of research papers. We illustrate the approach by a range of examples based on a nascent corpus of literature on COVID-19 as well as subsets of papers from PubMed on the World Health Organization list of neglected tropical diseases. The software is freely available at: https://github.com/pdddinakar/SemanticChangepointDetection.


Assuntos
COVID-19 , Semântica , Biologia Computacional , Humanos , PubMed , SARS-CoV-2
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA