Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 97
Filtrar
Mais filtros

País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Evol Anthropol ; 32(2): 67-82, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-37014801

RESUMO

In the past decades, it has been increasingly recognized that some areas of science, such as anthropology, have been plagued by racist, Western-centric, and/or sexist biases. Unfortunately, an acculturation process to racism and sexism has been occurring for generations leading to systemic inequities that will take a long time to disappear. Here, we highlight the existence of current examples of racism, Western-centrism and sexism within: (1) the most popular anatomical atlases used in biological, anthropological and medical education; (2) prominent natural history museums and World Heritage Sites; (3) biological and anthropological scientific research publications; and (4) popular culture and influential children's books and educational materials concerning human biology and evolution.


Assuntos
Antropologia , Racismo , Criança , Humanos , Sexismo , Viés , Biologia
2.
Dev Dyn ; 251(9): 1576-1612, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-34927301

RESUMO

BACKGROUND: Squamate reptiles (lizards, snakes, and amphisbaenians) exhibit incredible diversity in their locomotion, behavior, morphology, and ecological breadth. Although they often are used as models of locomotor diversity, surprisingly little attention has been given to muscle development in squamate reptiles. In fact, the most detailed examination was conducted almost 80 years ago and solely focused on the proximal limb regions. Herein, we present forelimb and hindlimb muscle morphogenesis data for three lizard species with different locomotion and feeding strategies: the desert grassland whiptail lizard, the central bearded dragon, and the veiled chameleon. This study fills critical gaps in our understanding of muscle morphogenesis in squamate reptiles and presents a comparative and temporospatial analysis of muscle development. RESULTS: Our results reveal a conserved pattern of early muscle development among lizards with different adult morphologies and ecologies. The variations that exist are concentrated in distal regions, particularly the specialized autopodia of chameleons, where differentiation of muscles associated with the digits is delayed. CONCLUSIONS: The chameleon autopod provides an example of major evolutionary modifications to the skeleton with only minor disruption of the conserved order and pattern of limb muscle development. This robustness of muscle patterning facilitates the evolution of extreme yet functional phenotypes.


Assuntos
Lagartos , Animais , Evolução Biológica , Extremidades , Membro Anterior/anatomia & histologia , Membro Anterior/fisiologia , Lagartos/genética , Filogenia , Serpentes
3.
Development ; 146(20)2019 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-31575609

RESUMO

We provide the first detailed ontogenetic analysis of human limb muscles using whole-mount immunostaining. We compare our observations with the few earlier studies that have focused on the development of these muscles, and with data available on limb evolution, variations and pathologies. Our study confirms the transient presence of several atavistic muscles - present in our ancestors but normally absent from the adult human - during normal embryonic human development, and reveals the existence of others not previously described in human embryos. These atavistic muscles are found both as rare variations in the adult population and as anomalies in human congenital malformations, reinforcing the idea that such variations/anomalies can be related to delayed or arrested development. We further show that there is a striking difference in the developmental order of muscle appearance in the upper versus lower limbs, reinforcing the idea that the similarity between various distal upper versus lower limb muscles of tetrapod adults may be derived.


Assuntos
Evolução Biológica , Extremidades/embriologia , Músculo Esquelético/embriologia , Animais , Membro Anterior/embriologia , Humanos , Extremidade Inferior/embriologia , Filogenia
4.
Proc Natl Acad Sci U S A ; 116(29): 14677-14681, 2019 07 16.
Artigo em Inglês | MEDLINE | ID: mdl-31209036

RESUMO

Domestication shaped wolves into dogs and transformed both their behavior and their anatomy. Here we show that, in only 33,000 y, domestication transformed the facial muscle anatomy of dogs specifically for facial communication with humans. Based on dissections of dog and wolf heads, we show that the levator anguli oculi medialis, a muscle responsible for raising the inner eyebrow intensely, is uniformly present in dogs but not in wolves. Behavioral data, collected from dogs and wolves, show that dogs produce the eyebrow movement significantly more often and with higher intensity than wolves do, with highest-intensity movements produced exclusively by dogs. Interestingly, this movement increases paedomorphism and resembles an expression that humans produce when sad, so its production in dogs may trigger a nurturing response in humans. We hypothesize that dogs with expressive eyebrows had a selection advantage and that "puppy dog eyes" are the result of selection based on humans' preferences.


Assuntos
Comportamento Animal/fisiologia , Cães/fisiologia , Domesticação , Expressão Facial , Músculos Faciais/anatomia & histologia , Animais , Sobrancelhas/fisiologia , Músculos Faciais/fisiologia , Feminino , Vínculo Humano-Animal , Humanos , Seleção Genética , Lobos/anatomia & histologia , Lobos/fisiologia
5.
J Anat ; 239(1): 12-31, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-33629373

RESUMO

Animal body parts evolve with variable degrees of integration that nonetheless yield functional adult phenotypes: but, how? The analysis of modularity with Anatomical Network Analysis (AnNA) is used to quantitatively determine phenotypic modules based on the physical connection among anatomical elements, an approach that is valuable to understand developmental and evolutionary constraints. We created anatomical network models of the head, forelimb, and hindlimb of two taxa considered to represent a 'generalized' eutherian (placental: mouse) and metatherian (marsupial: opossum) anatomical configuration and compared them with our species, which has a derived eutherian configuration. In these models, nodes represent anatomical units and links represent their physical connection. Here, we aimed to identify: (1) the commonalities and differences in modularity between species, (2) whether modules present a potential phylogenetic character, and (3) whether modules preferentially reflect either developmental or functional aspects of anatomy, or a mix of both. We predicted differences between networks of metatherian and eutherian mammals that would best be explained by functional constraints, versus by constraints of development and/or phylogeny. The topology of contacts between bones, muscles, and bones + muscles showed that, among all three species, skeletal networks were more similar than musculoskeletal networks. There was no clear indication that humans and mice are more alike when compared to the opossum overall, even though their musculoskeletal and skeletal networks of fore- and hindlimbs are slightly more similar. Differences were greatest among musculoskeletal networks of heads and next of forelimbs, which showed more variation than hindlimbs, supporting previous anatomical studies indicating that in general the configuration of the hindlimbs changes less across evolutionary history. Most observations regarding the anatomical networks seem to be best explained by function, but an exception is the adult opossum ear ossicles. These ear bones might form an independent module because the incus and malleus are involved in forming a functional primary jaw that enables the neonate to attach to the teat, where this newborn will complete its development. Additionally, the human data show a specialized digit 1 module (thumb/big toe) in both limb types, likely the result of functional and evolutionary pressures, as our ape ancestors had highly movable big toes and thumbs.


Assuntos
Camundongos/anatomia & histologia , Modelos Teóricos , Gambás/anatomia & histologia , Filogenia , Esqueleto/anatomia & histologia , Animais , Membro Anterior/anatomia & histologia , Cabeça/anatomia & histologia , Membro Posterior/anatomia & histologia , Humanos , Camundongos/genética , Camundongos/crescimento & desenvolvimento , Gambás/genética , Gambás/crescimento & desenvolvimento
6.
Evol Anthropol ; 30(3): 160-170, 2021 May.
Artigo em Inglês | MEDLINE | ID: mdl-34002426

RESUMO

The Visible Ape Project (VAP) is a free online platform providing unprecedented access to a suite of resources designed to comprehensively illustrate and educate about the anatomy of our closest relatives, the apes. It contains photographs, magnetic resonance images, and computed tomography scans, as well as three-dimensional models that can be manipulated to explore homologies and variations in soft and hard tissues in hylobatids, orangutans, gorillas, chimpanzees, and bonobos. Based at Howard University, a historically black university, it aims to reach communities underrepresented in anthropology and evolutionary biology, providing educational materials appropriate for K-12 and college classrooms in both English and Spanish. Accordingly, VAP incorporates outreach activities to disseminate science and promote awareness of apes, forming partnerships with veterinarians and conservationists in Africa and Asia. In this paper, we present an introduction to the website to illustrate how this accessible, evolving resource can support evolutionary anthropology and related disciplines.


Assuntos
Anatomia Artística , Atlas como Assunto , Hominidae/anatomia & histologia , Internet , Animais , Antropologia Física/educação , Evolução Biológica , Feminino , Humanos , Masculino , Modelos Anatômicos , Médicos Veterinários
7.
Nature ; 520(7548): 466-73, 2015 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-25903628

RESUMO

It has been more than 30 years since the publication of the new head hypothesis, which proposed that the vertebrate head is an evolutionary novelty resulting from the emergence of neural crest and cranial placodes. Neural crest generates the skull and associated connective tissues, whereas placodes produce sensory organs. However, neither crest nor placodes produce head muscles, which are a crucial component of the complex vertebrate head. We discuss emerging evidence for a surprising link between the evolution of head muscles and chambered hearts - both systems arise from a common pool of mesoderm progenitor cells within the cardiopharyngeal field of vertebrate embryos. We consider the origin of this field in non-vertebrate chordates and its evolution in vertebrates.


Assuntos
Evolução Biológica , Região Branquial/embriologia , Cabeça/anatomia & histologia , Cabeça/embriologia , Coração/anatomia & histologia , Coração/embriologia , Vertebrados/anatomia & histologia , Vertebrados/embriologia , Animais , Região Branquial/anatomia & histologia , Região Branquial/citologia , Mesoderma/citologia , Modelos Biológicos , Músculos/anatomia & histologia , Músculos/citologia , Músculos/embriologia , Crista Neural/citologia
8.
Dev Dyn ; 249(10): 1182-1200, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-32395826

RESUMO

Two main theories have been used to explain the origin of pectoral and pelvic appendages. The "fin-fold theory" proposes that they evolved from a trunk bilateral fin fold, while Gegenbaur's theory assumes they derived from the head branchial arches. However, none of these theories has been fully supported. The "fin-fold" theory is mainly often accepted due to some existing developmental data, but recent developmental studies have revived Gegenbaur's theory by revealing common mechanisms underlying the patterning of branchial arches and paired appendages. Here I review developmental data and many others lines of evidence, which lead to a crucial question: might the apparent contradictions between the two theories be explained by a dual origin of the pectoral appendage, that is, the pectoral girdle and fin/limb being mainly related to the head and trunk, respectively? If this is so then (a) the pectoral and pelvic girdles would not be serial homologues; (b) the term "developmental serial homologues" could only potentially be applied to the pectoral and pelvic fins/limbs. Fascinatingly, in a way this would be similar to what Owen had already suggested, more than 170 years ago: that the pectoral and pelvic girdles are mainly related to the head and trunk, respectively.


Assuntos
Nadadeiras de Animais/crescimento & desenvolvimento , Regulação da Expressão Gênica no Desenvolvimento , Brânquias/crescimento & desenvolvimento , Animais , Evolução Biológica , Extremidades/fisiologia , Peixes , Fósseis , Perfilação da Expressão Gênica , Redes Reguladoras de Genes , Humanos , Camundongos , Filogenia , Urodelos
9.
Biochim Biophys Acta Rev Cancer ; 1867(2): 101-108, 2017 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-27810337

RESUMO

Despite decades of research and an enormity of resultant data, cancer remains a significant public health problem. New tools and fresh perspectives are needed to obtain fundamental insights, to develop better prognostic and predictive tools, and to identify improved therapeutic interventions. With increasingly common genome-scale data, one suite of algorithms and concepts with potential to shed light on cancer biology is phylogenetics, a scientific discipline used in diverse fields. From grouping subsets of cancer samples to tracing subclonal evolution during cancer progression and metastasis, the use of phylogenetics is a powerful systems biology approach. Well-developed phylogenetic applications provide fast, robust approaches to analyze high-dimensional, heterogeneous cancer data sets. This article is part of a Special Issue entitled: Evolutionary principles - heterogeneity in cancer?, edited by Dr. Robert A. Gatenby.


Assuntos
Biomarcadores Tumorais/genética , Transformação Celular Neoplásica/genética , Evolução Molecular , Aptidão Genética , Neoplasias/genética , Filogenia , Adaptação Fisiológica , Algoritmos , Animais , Biomarcadores Tumorais/metabolismo , Transformação Celular Neoplásica/metabolismo , Transformação Celular Neoplásica/patologia , Regulação Neoplásica da Expressão Gênica , Predisposição Genética para Doença , Genômica/métodos , Hereditariedade , Humanos , Modelos Genéticos , Mutação , Neoplasias/tratamento farmacológico , Neoplasias/metabolismo , Neoplasias/patologia , Linhagem , Fenótipo , Transdução de Sinais/genética , Biologia de Sistemas , Fatores de Tempo
10.
Genesis ; 56(6-7): e23097, 2018 06.
Artigo em Inglês | MEDLINE | ID: mdl-29659153

RESUMO

Patterning of craniofacial muscles overtly begins with the activation of lineage-specific markers at precise, evolutionarily conserved locations within prechordal, lateral, and both unsegmented and somitic paraxial mesoderm populations. Although these initial programming events occur without influence of neural crest cells, the subsequent movements and differentiation stages of most head muscles are neural crest-dependent. Incorporating both descriptive and experimental studies, this review examines each stage of myogenesis up through the formation of attachments to their skeletal partners. We present the similarities among developing muscle groups, including comparisons with trunk myogenesis, but emphasize the morphogenetic processes that are unique to each group and sometimes subsets of muscles within a group. These groups include branchial (pharyngeal) arches, which encompass both those with clear homologues in all vertebrate classes and those unique to one, for example, mammalian facial muscles, and also extraocular, laryngeal, tongue, and neck muscles. The presence of several distinct processes underlying neural crest:myoblast/myocyte interactions and behaviors is not surprising, given the wide range of both quantitative and qualitative variations in craniofacial muscle organization achieved during vertebrate evolution.


Assuntos
Músculos Faciais/embriologia , Crista Neural/embriologia , Crânio/embriologia , Animais , Padronização Corporal/fisiologia , Diferenciação Celular/fisiologia , Músculos Faciais/anatomia & histologia , Músculos Faciais/citologia , Cabeça/embriologia , Cabeça/fisiologia , Morfogênese/fisiologia , Desenvolvimento Muscular/fisiologia , Músculo Esquelético/citologia , Crista Neural/citologia , Crânio/citologia , Vertebrados/embriologia
11.
J Exp Zool B Mol Dev Evol ; 330(1): 15-22, 2018 01.
Artigo em Inglês | MEDLINE | ID: mdl-29393575

RESUMO

After the inaugural Pan-American-Evo-Devo meeting (2015, Berkeley), I showed how major concerns about evo-devo (Evolutionary Developmental Biology) research were demonstrated by a simple, non-biased quantitative analysis of the titles/abstracts of that meeting's talks. Here, I apply the same methodology to the titles/abstracts of the recent Pan-American-Evo-Devo meeting (2017, Calgary). The aim is to evaluate if the concerns raised by me in that paper and by other authors have been addressed and/or if there are other types of differences between the two meetings that may reflect trends within the field of evo-devo. This analysis shows that the proportion of presentations referring to "morphology", "organism", "selection", "adaptive", "phylogeny", and their derivatives was higher in the 2017 meeting, which therefore had a more "organismal" feel. However, there was a decrease in the use of "evolution"/its derivatives and of macroevolutionary terms related to the tempo and mode of evolution in the 2017 meeting. Moreover, the disproportionately high use of genetic/genomic terms clearly shows that evo-devo continues to be mainly focused on devo, and particularly on "Geno", that is, on molecular/genetic studies. Furthermore, the vast majority of animal evo-devo studies are focused only on hard tissues, which are just a small fraction of the whole organism-for example, only 15% of the tissue mass of the human body. The lack of an integrative approach is also evidenced by the lack of studies addressing conceptual/long-standing broader questions, including the links between ecology and particularly behavior and developmental/evolutionary variability and between evo-devo and evolutionary medicine.


Assuntos
Evolução Biológica , Biologia do Desenvolvimento , Animais , Pesquisa Interdisciplinar , Modelos Biológicos
12.
J Anat ; 232(2): 186-199, 2018 02.
Artigo em Inglês | MEDLINE | ID: mdl-29148042

RESUMO

In the last decades, Danio rerio became one of the most used model organisms in various evo-devo studies devoted to the fin skeletal anatomy and fin-limb transition. Surprisingly, there is not even a single paper about the detailed anatomy of the adult muscles of the five fin types of this species. To facilitate more integrative developmental, functional, genetic, and evolutionary studies of the appendicular musculoskeletal system of the zebrafish and to provide a basis for further comparisons with other fishes and tetrapods, we describe here the identity, overall configuration, and attachments of appendicular muscles in a way that can be easily understood and implemented by non-anatomist researchers. We show that the muscle pattern of the caudal fin is very different from patterns seen in other fins but is very consistent within teleosts. Our observations support the idea of the developmental and evolutionary distinction of the caudal fin and point out that the musculature of the adult zebrafish pectoral and pelvic fins is in general very similar. Both paired fins have superficial and deep layers of abductors and adductors going to all/most rays plus the dorsal and ventral arrectors going only to the first ray. Nevertheless, we noted three major differences between the pelvic and pectoral fins of adult zebrafishes: (i) the pectoral girdle lacks a retractor muscle, which is present in the pelvic girdle - the retractor ischii; (ii) the protractor of the pelvic girdle is an appendicular/trunk muscle, while that of the pectoral girdle is a branchiomeric muscle; (iii) the first ray of the pectoral fin is moved by an additional arrector-3. The anal and dorsal fins consist of serially repeated units, each of which comprises one half-ray and three appendicular muscles (one erector, depressor, and inclinator) on each side of the body. The outermost rays are attachment points for the longitudinal protractor and retractor. Based on our results, we discuss whether the pectoral appendage might evolutionarily be closer to the head than to the pelvic appendage and whether the pelvic appendage might have been derived from the trunk/median fins. We discuss a hypothesis of paired fin origin that is a hybrid of the fin-fold and Gegenbaur's theories. Lastly, our data indicate that D. rerio is indeed an appropriate model organism for the appendicular musculature of teleosts in particular and, at least in the case of the paired fins, also of actinopterygians as a whole.


Assuntos
Nadadeiras de Animais/anatomia & histologia , Evolução Biológica , Músculo Esquelético/anatomia & histologia , Peixe-Zebra/anatomia & histologia , Anatomia Comparada , Animais
13.
PLoS Biol ; 13(1): e1002033, 2015 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-25562316

RESUMO

Despite a large and multifaceted effort to understand the vast landscape of phenotypic data, their current form inhibits productive data analysis. The lack of a community-wide, consensus-based, human- and machine-interpretable language for describing phenotypes and their genomic and environmental contexts is perhaps the most pressing scientific bottleneck to integration across many key fields in biology, including genomics, systems biology, development, medicine, evolution, ecology, and systematics. Here we survey the current phenomics landscape, including data resources and handling, and the progress that has been made to accurately capture relevant data descriptions for phenotypes. We present an example of the kind of integration across domains that computable phenotypes would enable, and we call upon the broader biology community, publishers, and relevant funding agencies to support efforts to surmount today's data barriers and facilitate analytical reproducibility.


Assuntos
Estudos de Associação Genética , Animais , Biologia Computacional , Curadoria de Dados , Bases de Dados Factuais/normas , Interação Gene-Ambiente , Genômica , Humanos , Fenótipo , Padrões de Referência , Reprodutibilidade dos Testes , Terminologia como Assunto
14.
J Exp Zool B Mol Dev Evol ; 328(3): 207-229, 2017 05.
Artigo em Inglês | MEDLINE | ID: mdl-28422426

RESUMO

Since the rise of evo-devo (evolutionary developmental biology) in the 1980s, few authors have attempted to combine the increasing knowledge obtained from the study of model organisms and human medicine with data from comparative anatomy and evolutionary biology in order to investigate the links between development, pathology, and macroevolution. Fortunately, this situation is slowly changing, with a renewed interest in evolutionary developmental pathology (evo-devo-path) in the past decades, as evidenced by the idea to publish this special, and very timely, issue on "Developmental Evolution in Biomedical Research." As all of us have recently been involved, independently, in works related in some way or another with evolution and developmental anomalies, we decided to join our different perspectives and backgrounds in the present contribution for this special issue. Specifically, we provide a brief historical account on the study of the links between evolution, development, and pathologies, followed by a review of the recent work done by each of us, and then by a general discussion on the broader developmental and macroevolutionary implications of our studies and works recently done by other authors. Our primary aims are to highlight the strength of studying developmental anomalies within an evolutionary framework to understand morphological diversity and disease by connecting the recent work done by us and others with the research done and broader ideas proposed by authors such as Étienne Geoffroy Saint-Hilaire, Waddington, Goldschmidt, Gould, and Per Alberch, among many others to pave the way for further and much needed work regarding abnormal development and macroevolution.


Assuntos
Anatomia Comparada , Evolução Biológica , Biologia do Desenvolvimento , Animais , Dinossauros/genética , Dinossauros/crescimento & desenvolvimento , Humanos , Lagartos/genética , Lagartos/crescimento & desenvolvimento , Teratologia
15.
J Anat ; 230(6): 842-858, 2017 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-28266009

RESUMO

Few descriptions of the musculoskeletal system of humans with anencephaly or spina bifida exist in the literature. Even less is published about individuals in which both phenomena occur together, i.e. about craniorachischisis. Here we provide a detailed report on the musculoskeletal structures of a fetus with craniorachischisis, as well as comparisons with the few descriptions for anencephaly and with musculoskeletal anomalies found in other congenital malformations. We focused in particular on the comparison with trisomies 13, 18, and 21 because neural tube defects have been associated with such chromosomal defects. Our results showed that many of the defects found in the fetus with craniorachischisis are similar not only to anomalies previously described in the available works on musculoskeletal phenotypes seen in fetuses with anencephaly and spina bifida, but also to a wide range of other different conditions/syndromes including trisomies 13, 18 and 21, and cyclopia. The fact that similar anomalies are seen commonly not only in a wide range of different syndromes, but also as variants of the normal human population and as the 'normal' phenotype of other animals, supports Pere Alberch's unfortunately named idea of a 'logic of monsters'. That is, it supports the idea that development is so constrained that both in 'normal' and abnormal development one sees certain outcomes being produced again and again because ontogenetic constraints only allow a few possible outcomes, thus also leading to cases where the anatomical defects of some organisms are similar to the 'normal' phenotype of other organisms. In fact, this applies not only to specific anomalies but also to general patterns, such as the fact that in pathological conditions affecting different regions of the body, one consistently sees more defects on the upper limbs than on the lower limbs. Such general patterns are, again, seen in the fetus examined for this study, which had 29 muscle anomalies on the right upper limb and 22 muscle anomalies on the left upper limb, vs. seven muscle anomalies on the right lower limb and two on the left lower limb. It is therefore hoped that this work, which is part of our effort to describe and compile information on human musculoskeletal defects found in a wide range of conditions, will contribute not only to a better understanding of craniorachischisis in particular and of human congenital malformations in general, but also to broader discussions on the fields of comparative anatomy, and developmental and evolutionary biology.


Assuntos
Anencefalia/patologia , Sistema Musculoesquelético/patologia , Disrafismo Espinal/patologia , Dissecação , Feto , Humanos , Masculino
16.
J Anat ; 230(4): 532-541, 2017 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-27976380

RESUMO

As a member of the most basal clade of extant ray-finned fishes (actinopterygians) and of one of the most basal clades of osteichthyans (bony fishes + tetrapods), Polypterus can provide insights into the ancestral anatomy of both ray-finned and lobe-finned fishes, including those that gave rise to tetrapods. The pectoral fin of Polypterus has been well described but, surprisingly, neither the bones nor the muscles of the pelvic fin are well known. We stained and dissected the pelvic fin of Polypterus senegalus and Polypterus delhezi to offer a detailed description of its musculoskeletal anatomy. In addition to the previously described adductor and abductor muscles, we found preaxial and postaxial muscles similar to those in the pectoral fin of members of this genus. The presence of pre- and postaxial muscles in both the pectoral and pelvic fins of Polypterus, combined with recent descriptions of similar muscles in the lobe-finned fishes Latimeria and Neoceratodus, suggests that they were present in the most recent common ancestor of bony fishes. These results have crucial implications for the evolution of appendicular muscles in both fish and tetrapods.


Assuntos
Nadadeiras de Animais/anatomia & histologia , Músculo Esquelético/anatomia & histologia , Pelve/anatomia & histologia , Animais , Peixes/anatomia & histologia , Filogenia
17.
Front Zool ; 14: 31, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28649268

RESUMO

BACKGROUND: The origin of jawed vertebrates was marked by profound reconfigurations of the skeleton and muscles of the head and by the acquisition of two sets of paired appendages. Extant cartilaginous fish retained numerous plesiomorphic characters of jawed vertebrates, which include several aspects of their musculature. Therefore, myogenic studies on sharks are essential in yielding clues on the developmental processes involved in the origin of the muscular anatomy. RESULTS: Here we provide a detailed description of the development of specific muscular units integrating the cephalic and appendicular musculature of the shark model, Scyliorhinus canicula. In addition, we analyze the muscle development across gnathostomes by comparing the developmental onset of muscle groups in distinct taxa. Our data reveal that appendicular myogenesis occurs earlier in the pectoral than in the pelvic appendages. Additionally, the pectoral musculature includes muscles that have their primordial developmental origin in the head. This culminates in a tight muscular connection between the pectoral girdle and the cranium, which founds no parallel in the pelvic fins. Moreover, we identified a lateral to ventral pattern of formation of the cephalic muscles, that has been equally documented in osteichthyans but, in contrast with these gnathostomes, the hyoid muscles develop earlier than mandibular muscle in S. canicula. CONCLUSION: Our analyses reveal considerable differences in the formation of the pectoral and pelvic musculatures in S. canicula, reinforcing the idea that head tissues have contributed to the formation of the pectoral appendages in the common ancestor of extant gnathostomes. In addition, temporal differences in the formation of some cranial muscles between chondrichthyans and osteichthyans might support the hypothesis that the similarity between the musculature of the mandibular arch and of the other pharyngeal arches represents a derived feature of jawed vertebrates.

18.
J Exp Zool B Mol Dev Evol ; 326(1): 9-18, 2016 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-26626542

RESUMO

I provide a brief discussion of the present/future of Evo-Devo, reviewing opinions expressed by colleagues with different opinions/backgrounds about what Evo-Devo should be and the potential of this flourishing field and combining them with an analysis of the recent, and excellent inaugural meeting of the Pan-American Society for Evo-Devo. As an advocate of Evo-Devo and its enormous future potential, I feel that despite our different views and fields of research, we Evo-Devoists are all in the same boat and should try our best to make sure this potential is fully expressed. Therefore, I call attention to some concerns raised by other colleagues, which in my opinion are demonstrated by a quantitative analysis of the titles/abstracts of the 56 talks at this meeting. This analysis is very simple, in order to maintain the needed objectivity and minimize bias. Yet, it is profound in its implications, precisely because of its simplicity and because this meeting is clearly a major landmark for the development/future directions of Evo-Devo. The analysis shows that terms associated with development at the more molecular/genetic level were vastly overrepresented compared to terms related to evolution or to development at the whole organism level. That is, it provides support for the idea that current Evo-Devo is mainly focused on Devo, and that Devo itself is largely focused on "Geno," that is, on molecular/genetic developmental studies. This trend seems to be leading towards a loss of focus on the whole organism and on the major microevolutionary and macroevolutionary questions/theories that remain to be solved/tested.


Assuntos
Evolução Biológica , Biologia do Desenvolvimento , Genética Populacional , Evolução Molecular , Fenótipo
19.
J Exp Zool B Mol Dev Evol ; 326(4): 215-24, 2016 06.
Artigo em Inglês | MEDLINE | ID: mdl-27245479

RESUMO

Surprisingly the oldest formal discipline in medicine (anatomy) has not yet felt the full impact of evolutionary developmental biology. In medical anatomy courses and textbooks, the human body is still too often described as though it is a "perfect machine." In fact, the study of human anatomy predates evolutionary theory; therefore, many of its conventions continue to be outdated, making it difficult to study, understand, and treat the human body, and to compare it with that of other, nonbipedal animals, including other primates. Moreover, such an erroneous view of our anatomy as "perfect" can be used to fuel nonevolutionary ideologies such as intelligent design. In the section An Evolutionary and Developmental Approach to Human Anatomical Position of this paper, we propose the redefinition of the "human standard anatomical position" used in textbooks to be consistent with human evolutionary and developmental history. This redefined position also simplifies, for students and practitioners of the health professions, the study and learning of embryonic muscle groups (each group including muscles derived from the same/ontogenetically closely related primordium/primordia) and joint movements and highlights the topological correspondence between the upper and lower limbs. Section Evolutionary and Developmental Constraints, "Imperfections" and Sports Pathologies continues the theme by describing examples of apparently "illogical" characteristics of the human body that only make sense when one understands the developmental and evolutionary constraints that have accumulated over millions of years. We focus, in particular, on musculoskeletal functional problems and sports pathologies to emphasize the links with pathology and medicine. These examples demonstrate how incorporating evolutionary theory into anatomy education can be helpful for medical students, teachers, researchers, and physicians, as well as for anatomists, functional morphologists, and evolutionary and developmental biologists.


Assuntos
Anatomia , Evolução Biológica , Biologia do Desenvolvimento , Anatomia Comparada , Animais , Traumatismos em Atletas/patologia , Humanos , Patologia , Terminologia como Assunto , Livros de Texto como Assunto
20.
Dev Dyn ; 244(9): 1046-1057, 2015 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-26095777

RESUMO

Recent findings that urochordates are the closest sister-group of vertebrates have dramatically changed our understanding of chordate evolution and vertebrate origins. To continue to deepen our understanding of chordate evolution and diversity, in particular the morphological and taxonomical diversity of the vertebrate clade, one must explore the origin, development, and comparative anatomy of not only hard tissues, but also soft tissues such as muscles. Building on a recent overview of the discovery of a cardiopharyngeal field in urochordates and the profound implications for reconstructing the origin and early evolution of vertebrates, in this study we focus on the broader comparative and developmental anatomy of chordate cephalic muscles and their relation to life history, and to developmental, morphological and taxonomical diversity. We combine our recent findings on cephalochordates, urochordates, and vertebrates with a literature review and suggest that developmental changes related to metamorphosis and/or heterochrony (e.g., peramorphosis) played a crucial role in the early evolution of chordates and vertebrates. Recent studies reviewed here supported de Beer's "law of diversity" that peramorphic animals (e.g., ascidians, lampreys) are taxonomically and morphologically less diverse than nonperamorphic animals (e.g., gnathostomes), probably because their "too specialized" development and adult anatomy constrain further developmental and evolutionary innovations. Developmental Dynamics 244:1046-1057, 2015. © 2014 Wiley Periodicals, Inc.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA