Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 37
Filtrar
1.
Angew Chem Int Ed Engl ; 59(47): 21096-21105, 2020 11 16.
Artigo em Inglês | MEDLINE | ID: mdl-32745361

RESUMO

Advances in genomic analyses enable the identification of new proteins that are associated with disease. To validate these targets, tool molecules are required to demonstrate that a ligand can have a disease-modifying effect. Currently, as tools are reported for only a fraction of the proteome, platforms for ligand discovery are essential to leverage insights from genomic analyses. Fragment screening offers an efficient approach to explore chemical space. Presented here is a fragment-screening platform, termed PhABits (PhotoAffinity Bits), which utilizes a library of photoreactive fragments to covalently capture fragment-protein interactions. Hits can be profiled to determine potency and the site of crosslinking, and subsequently developed as reporters in a competitive displacement assay to identify novel hit matter. The PhABit platform is envisioned to be widely applicable to novel protein targets, identifying starting points in the development of therapeutics.


Assuntos
Antineoplásicos/análise , Compostos Bicíclicos Heterocíclicos com Pontes/análise , Reagentes de Ligações Cruzadas/química , Marcadores de Fotoafinidade/química , Pirazóis/análise , Quinoxalinas/análise , Sulfonamidas/análise , Vemurafenib/análise , Antineoplásicos/farmacologia , Compostos Bicíclicos Heterocíclicos com Pontes/farmacologia , Humanos , Ligantes , Estrutura Molecular , Proteínas/antagonistas & inibidores , Proteínas/química , Pirazóis/farmacologia , Quinoxalinas/farmacologia , Sulfonamidas/farmacologia , Vemurafenib/farmacologia
2.
Plant J ; 94(6): 1109-1125, 2018 06.
Artigo em Inglês | MEDLINE | ID: mdl-29659075

RESUMO

Cyanogenic glucosides are nitrogen-containing specialized metabolites that provide chemical defense against herbivores and pathogens via the release of toxic hydrogen cyanide. It has been suggested that cyanogenic glucosides are also a store of nitrogen that can be remobilized for general metabolism via a previously unknown pathway. Here we reveal a recycling pathway for the cyanogenic glucoside dhurrin in sorghum (Sorghum bicolor) that avoids hydrogen cyanide formation. As demonstrated in vitro, the pathway proceeds via spontaneous formation of a dhurrin-derived glutathione conjugate, which undergoes reductive cleavage by glutathione transferases of the plant-specific lambda class (GSTLs) to produce p-hydroxyphenyl acetonitrile. This is further metabolized to p-hydroxyphenylacetic acid and free ammonia by nitrilases, and then glucosylated to form p-glucosyloxyphenylacetic acid. Two of the four GSTLs in sorghum exhibited high stereospecific catalytic activity towards the glutathione conjugate, and form a subclade in a phylogenetic tree of GSTLs in higher plants. The expression of the corresponding two GSTLs co-localized with expression of the genes encoding the p-hydroxyphenyl acetonitrile-metabolizing nitrilases at the cellular level. The elucidation of this pathway places GSTs as key players in a remarkable scheme for metabolic plasticity allowing plants to reverse the resource flow between general and specialized metabolism in actively growing tissue.


Assuntos
Glutationa Transferase/metabolismo , Glicosídeos/metabolismo , Proteínas de Plantas/metabolismo , Sorghum/enzimologia , Catálise , Cianeto de Hidrogênio/metabolismo , Redes e Vias Metabólicas , Nitrilas/metabolismo , Sorghum/metabolismo
3.
BMC Biol ; 10: 67, 2012 Jul 31.
Artigo em Inglês | MEDLINE | ID: mdl-22849329

RESUMO

BACKGROUND: Gut microbes influence animal health and thus, are potential targets for interventions that slow aging. Live E. coli provides the nematode worm Caenorhabditis elegans with vital micronutrients, such as folates that cannot be synthesized by animals. However, the microbe also limits C. elegans lifespan. Understanding these interactions may shed light on how intestinal microbes influence mammalian aging. RESULTS: Serendipitously, we isolated an E. coli mutant that slows C. elegans aging. We identified the disrupted gene to be aroD, which is required to synthesize aromatic compounds in the microbe. Adding back aromatic compounds to the media revealed that the increased C. elegans lifespan was caused by decreased availability of para-aminobenzoic acid, a precursor to folate. Consistent with this result, inhibition of folate synthesis by sulfamethoxazole, a sulfonamide, led to a dose-dependent increase in C. elegans lifespan. As expected, these treatments caused a decrease in bacterial and worm folate levels, as measured by mass spectrometry of intact folates. The folate cycle is essential for cellular biosynthesis. However, bacterial proliferation and C. elegans growth and reproduction were unaffected under the conditions that increased lifespan. CONCLUSIONS: In this animal:microbe system, folates are in excess of that required for biosynthesis. This study suggests that microbial folate synthesis is a pharmacologically accessible target to slow animal aging without detrimental effects.


Assuntos
Caenorhabditis elegans/crescimento & desenvolvimento , Caenorhabditis elegans/microbiologia , Escherichia coli/crescimento & desenvolvimento , Ácido Fólico/biossíntese , Longevidade/fisiologia , Modelos Biológicos , Ácido 4-Aminobenzoico/farmacologia , Animais , Caenorhabditis elegans/efeitos dos fármacos , Escherichia coli/efeitos dos fármacos , Escherichia coli/genética , Genes Bacterianos/genética , Longevidade/efeitos dos fármacos , Metaboloma/efeitos dos fármacos , Viabilidade Microbiana/efeitos dos fármacos , Mutação/genética , Plasmídeos/metabolismo , Interferência de RNA/efeitos dos fármacos , Sulfametoxazol/farmacologia
4.
J Biol Chem ; 286(37): 32268-76, 2011 Sep 16.
Artigo em Inglês | MEDLINE | ID: mdl-21778235

RESUMO

Plants respond to synthetic chemicals by eliciting a xenobiotic response (XR) that enhances the expression of detoxifying enzymes such as glutathione transferases (GSTs). In agrochemistry, the ability of safeners to induce an XR is used to increase herbicide detoxification in cereal crops. Based on the responsiveness of the model plant Arabidopsis thaliana to the rice safener fenclorim (4,6-dichloro-2-phenylpyrimidine), a series of related derivatives was prepared and tested for the ability to induce GSTs in cell suspension cultures. The XR in Arabidopsis could be divided into rapid and slow types depending on subtle variations in the reactivity (electrophilicity) and chemical structure of the derivatives. In a comparative microarray study, Arabidopsis cultures were treated with closely related compounds that elicited rapid (fenclorim) and slow (4-chloro-6-methyl-2-phenylpyrimidine) XRs. Both chemicals induced major changes in gene expression, including a coordinated suppression in cell wall biosynthesis and an up-regulation in detoxification pathways, whereas only fenclorim selectively induced sulfur and phenolic metabolism. These transcriptome studies suggested several linkages between the XR and oxidative and oxylipin signaling. Confirming links with abiotic stress signaling, suppression of glutathione content enhanced GST induction by fenclorim, whereas fatty acid desaturase mutants, which were unable to synthesize oxylipins, showed an attenuated XR. Examining the significance of these studies to agrochemistry, only those fenclorim derivatives that elicited a rapid XR proved effective in increasing herbicide tolerance (safening) in rice.


Assuntos
Arabidopsis/metabolismo , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Herbicidas/farmacologia , Pirimidinas/farmacologia , Estresse Fisiológico/efeitos dos fármacos , Perfilação da Expressão Gênica , Análise de Sequência com Séries de Oligonucleotídeos , Transcriptoma
5.
Biochem J ; 438(1): 63-70, 2011 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-21631432

RESUMO

The plant-specific phi class of glutathione transferases (GSTFs) are often highly stress-inducible and expressed in a tissue-specific manner, suggestive of them having important protective roles. To date, these functions remain largely unknown, although activities associated with the binding and transport of reactive metabolites have been proposed. Using a sensitive and selective binding screen, we have probed the Arabidopsis thaliana GSTFs for natural product ligands from bacteria and plants. Uniquely, when overexpressed in bacteria, family members GSTF2 and GSTF3 bound a series of heterocyclic compounds, including lumichrome, harmane, norharmane and indole-3-aldehyde. When screened against total metabolite extracts from A. thaliana, GSTF2 also selectively bound the indole-derived phytoalexin camalexin, as well as the flavonol quercetin-3-O-rhamnoside. In each case, isothermal titration calorimetry revealed high-affinity binding (typically Kd<1 µM), which was enhanced in the presence of glutathione and by the other heterocyclic ligands. With GSTF2, these secondary ligand associations resulted in an allosteric enhancement in glutathione-conjugating activity. Together with the known stress responsiveness of GSTF2 and its association with membrane vesicles, these results are suggestive of roles in regulating the binding and transport of defence-related compounds in planta.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Glutationa Transferase/metabolismo , Compostos Heterocíclicos/química , Compostos Heterocíclicos/farmacologia , Anti-Infecciosos/farmacologia , Arabidopsis/crescimento & desenvolvimento , Proteínas de Arabidopsis/genética , Glutationa Transferase/genética , Indóis/farmacologia , Mutagênese , Mutação/genética , Ligação Proteica , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/metabolismo , Tiazóis/farmacologia
6.
J Mol Biol ; 434(2): 167395, 2022 01 30.
Artigo em Inglês | MEDLINE | ID: mdl-34896364

RESUMO

GSK3732394 is a multi-specific biologic inhibitor of HIV entry currently under clinical evaluation. A key component of this molecule is an adnectin (6940_B01) that binds to CD4 and inhibits downstream actions of gp160. Studies were performed to determine the binding site of the adnectin on CD4 and to understand the mechanism of inhibition. Using hydrogen-deuterium exchange with mass spectrometry (HDX), CD4 peptides showed differential rates of deuteration (either enhanced or slowed) in the presence of the adnectin that mapped predominantly to the interface of domains 2 and 3 (D2-D3). In addition, an X-ray crystal structure of an ibalizumab Fab/CD4(D1-D4)/adnectin complex revealed an extensive interface between the adnectin and residues on CD4 domains D2-D4 that stabilize a novel T-shaped CD4 conformation. A cryo-EM map of the gp140/CD4/GSK3732394 complex clearly shows the bent conformation for CD4 while bound to gp140. Mutagenic analyses on CD4 confirmed that amino acid F202 forms a key interaction with the adnectin. In addition, amino acid L151 was shown to be a critical indirect determinant of the specificity for binding to the human CD4 protein over related primate CD4 molecules, as it appears to modulate CD4's flexibility to adopt the adnectin-bound conformation. The significant conformational change of CD4 upon adnectin binding brings the D1 domain of CD4 in proximity to the host cell membrane surface, thereby re-orienting the gp120 binding site in a direction that is inaccessible to incoming virus due to a steric clash between gp160 trimers on the virus surface and the target cell membrane.


Assuntos
Fármacos Anti-HIV/farmacologia , Antígenos CD4/química , Antígenos CD4/metabolismo , HIV-1/metabolismo , Ligação Viral/efeitos dos fármacos , Animais , Anticorpos Monoclonais , Sítios de Ligação , Modelos Moleculares , Ligação Proteica , Conformação Proteica , Domínios Proteicos , Internalização do Vírus/efeitos dos fármacos
7.
J Biol Chem ; 285(47): 36322-9, 2010 Nov 19.
Artigo em Inglês | MEDLINE | ID: mdl-20841361

RESUMO

The glutathione transferases (GSTs) of plants are a superfamily of abundant enzymes whose roles in endogenous metabolism are largely unknown. For example, the lambda class of GSTs (GSTLs) have members that are selectively induced by chemical stress treatments and based on their enzyme chemistry are predicted to have roles in redox homeostasis. However, using conventional approaches these functions have yet to be determined. To address this, recombinant GSTLs from wheat and Arabidopsis were tagged with a Strep tag and after affinity-immobilization, incubated with extracts from Arabidopsis, tobacco, and wheat. Bound ligands were then recovered by solvent extraction and identified by mass spectrometry (MS). With the wheat enzyme TaGSTL1, the ligand profiles obtained with in vitro extracts from tobacco closely matched those observed after the protein had been expressed in planta, demonstrating that these associations were physiologically representative. The stress-inducible TaGSTL1 was found to selectively recognize flavonols (e.g. taxifolin; K(d) = 25 nM), with this binding being dependent upon S-glutathionylation of an active site cysteine. In the case of the wheat extracts, this selectivity in ligand recognitions lead to the detection of flavonols that had not been previously described in this cereal. Subsequent in vitro assays showed that the co-binding of flavonols, such as quercetin, to the thiolated TaGSTL1 represented an intermediate step in the reduction of the respective S-glutathionylated quinone derivatives to yield free flavonols. These results suggest a novel role for GSTLs in maintaining the flavonoid pool under stress conditions.


Assuntos
Arabidopsis/enzimologia , Flavonoides/metabolismo , Glutationa Transferase/metabolismo , Nicotiana/enzimologia , Estresse Oxidativo , Proteínas Recombinantes/metabolismo , Triticum/enzimologia , Glutationa/metabolismo , Glutationa Transferase/genética , Ligantes , Oxirredução , Proteínas Recombinantes/genética , Proteínas Recombinantes/isolamento & purificação , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz
8.
Drug Metab Rev ; 43(2): 266-80, 2011 May.
Artigo em Inglês | MEDLINE | ID: mdl-21425939

RESUMO

Discovered 40 years ago, plant glutathione transferases (GSTs) now have a well-established role in determining herbicide metabolism and selectivity in crops and weeds. Within the GST superfamily, the numerous and plant-specific phi (F) and tau (U) classes are largely responsible for catalyzing glutathione-dependent reactions with xenobiotics, notably conjugation leading to detoxification and, more rarely, bioactivating isomerizations. In total, the crystal structures of 10 plant GSTs have been solved and a highly conserved N-terminal glutathione binding domain and structurally diverse C-terminal hydrophobic domain identified, along with key coordinating residues. Unlike drug-detoxifying mammalian GSTs, plant enzymes utlilize a catalytic serine in place of a tyrosine residue. Both GSTFs and GSTUs undergo changes in structure during catalysis indicative of an induced fit mechanism on substrate binding, with an understanding of plant GST structure/function allowing these proteins to be engineered for novel functions in detoxification and ligand recognition. Several major crops produce alternative thiols, with GSTUs shown to use homoglutathione in preference to glutathione, in herbicide detoxification reactions in soybeans. Similarly, hydroxymethylglutathione is used, in addition to glutathione in detoxifying the herbicide fenoxaprop in wheat. Following GST action, plants are able to rapidly process glutathione conjugates by at least two distinct pathways, with the available evidence suggesting these function in an organ- and species-specific manner. Roles for GSTs in endogenous metabolism are less well defined, with the enzymes linked to a diverse range of functions, including signaling, counteracting oxidative stress, and detoxifying and transporting secondary metabolites.


Assuntos
Produtos Agrícolas/enzimologia , Glutationa Transferase/fisiologia , Inseticidas/metabolismo , Plantas Daninhas/enzimologia , Xenobióticos/metabolismo , Glutationa Transferase/química , Glutationa Transferase/classificação , Glutationa Transferase/genética , Resistência a Herbicidas , Inseticidas/química , Desintoxicação Metabólica Fase II , Modelos Moleculares , Estrutura Molecular , Filogenia , Xenobióticos/química
9.
Org Biomol Chem ; 8(7): 1610-8, 2010 Apr 07.
Artigo em Inglês | MEDLINE | ID: mdl-20237672

RESUMO

A carbamate linked quenching group coupled with a pro-quinone methide reactive core provides an effective tool for studying enzyme function without problems associated with background fluorescence from unreacted probe. However, the relatively slow fragmentation of the carbamate linkage in such a strategy may cause problems of loss of signal or a decoupling of enzyme activity and labelling.


Assuntos
Arabidopsis/enzimologia , Carbamatos/química , Carboxilesterase/análise , Corantes Fluorescentes/química , Indolquinonas/química , Sequência de Aminoácidos , Fluorescência , Modelos Moleculares , Dados de Sequência Molecular , Alinhamento de Sequência
10.
Plant J ; 56(4): 665-77, 2008 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-18644000

RESUMO

In the course of several different projects, we came to realize that there is a significant amount of untapped potential in the publicly available T-DNA insertion lines. In addition to the GABI-Kat lines, which were designed specifically for activation tagging, lines from the SAIL and FLAGdb collections are also useful for this purpose. As well as the 35S promoter chosen for activation tagging in GABI-Kat lines, we found that the 1'2' bidirectional promoter is capable of activating expression of flanking genomic sequences in both GABI-Kat and SAIL lines. Thus these lines have added potential for activation tagging. We also show that these lines are capable of generating antisense transcripts and so have the potential to be used for suppression (loss/reduction of function) studies. By virtue of weak terminator sequences in some T-DNA constructs, transcript read-through from selectable markers is also possible, which again has the potential to be exploited in activation/suppression studies. Finally, we show that, by selecting and characterizing lines in which the T-DNA insertions are present specifically within introns of a target gene, an allelic series of mutants with varying levels of reduced expression can be generated, due to differences in efficiency of intron splicing. Taken together, our analyses demonstrate that there is a wealth of untapped potential within existing insertion lines for studies on gene function, and the effective exploitation of these resources is discussed.


Assuntos
DNA Bacteriano/genética , DNA de Plantas/genética , Mutagênese Insercional/métodos , Elementos Antissenso (Genética) , Arabidopsis/genética , Regulação da Expressão Gênica de Plantas , Inativação Gênica , Genes de Plantas , Vetores Genéticos , Genoma de Planta , Plantas Geneticamente Modificadas/genética , Regiões Promotoras Genéticas , Análise de Sequência de DNA , Transcrição Gênica
11.
J Exp Bot ; 60(4): 1207-18, 2009.
Artigo em Inglês | MEDLINE | ID: mdl-19174456

RESUMO

Enzyme screens with Strep-tagged recombinant proteins and expression studies with the respective green fluorescent protein (GFP) fusions have been employed to examine the functional activities and subcellular localization of members of the Arabidopsis glutathione transferase (GST) superfamily. Fifty-one of 54 GST family members were transcribed and 41 found to express as functional glutathione-dependent enzymes in Escherichia coli. Functional redundancy was observed and in particular three theta (T) class GSTs showed conserved activities as hydroperoxide-reducing glutathione peroxidases (GPOXs). When expressed in tobacco as GFP fusions, all three GSTTs localized to the peroxisome, where their GPOX activity could prevent membrane damage arising from fatty acid oxidation. Through alternative splicing, two of these GSTTs form fusions with Myb transcription factor-like domains. Examination of one of these variants showed discrete localization within the nucleus, possibly serving a role in reducing nucleic acid hydroperoxides or in signalling. Based on this unexpected differential sub-cellular localization, 15 other GST family members were expressed as GFP fusions in tobacco. Most accumulated in the cytosol, but GSTU12 localized to the nucleus, a family member resembling a bacterial tetrachlorohydroquinone dehalogenase selectively associated with the plasma membrane, and a lambda GSTL2 was partially directed to the peroxisome after removal of a putative chloroplast transit peptide. Based on the results obtained with the GSTTs, it was concluded that these proteins can exert identical protective functions in differing subcellular compartments.


Assuntos
Arabidopsis/enzimologia , Glutationa Transferase/metabolismo , Motivos de Aminoácidos , Citosol/enzimologia , Vetores Genéticos/genética , Glutationa Transferase/química , Espaço Intracelular/enzimologia , Microscopia Confocal , Filogenia , Transporte Proteico , Proteínas Recombinantes de Fusão , Frações Subcelulares/enzimologia , Nicotiana/citologia , Nicotiana/metabolismo
12.
Biomacromolecules ; 10(4): 793-7, 2009 Apr 13.
Artigo em Inglês | MEDLINE | ID: mdl-19249848

RESUMO

To permit facile (15)N solid-state NMR (ssNMR) analysis of the degree of acetylation (DA) of chitinous materials in fungi a method for the introduction of a (15)N isotopic label has been developed. Using Penicillium chrysogenum as a model system, a series of (15)N-based media were surveyed for their abilities to support mycelial growth, and a rich medium supplemented with ((15)NH(4))(2)SO(4) supported good growth. Uptake of label into chitin extracted from mycelia grown in the rich ((15)NH(4))(2)SO(4)-based media was monitored by mass spectrometry, with approximately 1 g/L of ((15)NH(4))(2)SO(4) leading to approximately 65% incorporation. The labeled chitin was studied by ssNMR to determine its DA, and the (15)N label permitted measurement of DA to within 0.5% with acquisition times of on the order of half an hour. Similar studies validated the method for DA measurements on chitin from cultures of Aspergillus niger and Mucor rouxii.


Assuntos
Quitina/química , Quitina/metabolismo , Isótopos de Nitrogênio , Penicillium chrysogenum/metabolismo , Acetilação , Aspergillus niger/metabolismo , Espectroscopia de Ressonância Magnética , Mucor/metabolismo , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz
13.
J Med Chem ; 62(16): 7506-7525, 2019 08 22.
Artigo em Inglês | MEDLINE | ID: mdl-31398032

RESUMO

The bromodomain of ATAD2 has proved to be one of the least-tractable proteins within this target class. Here, we describe the discovery of a new class of inhibitors by high-throughput screening and show how the difficulties encountered in establishing a screening triage capable of finding progressible hits were overcome by data-driven optimization. Despite the prevalence of nonspecific hits and an exceptionally low progressible hit rate (0.001%), our optimized hit qualification strategy employing orthogonal biophysical methods enabled us to identify a single active series. The compounds have a novel ATAD2 binding mode with noncanonical features including the displacement of all conserved water molecules within the active site and a halogen-bonding interaction. In addition to reporting this new series and preliminary structure-activity relationship, we demonstrate the value of diversity screening to complement the knowledge-based approach used in our previous ATAD2 work. We also exemplify tactics that can increase the chance of success when seeking new chemical starting points for novel and less-tractable targets.


Assuntos
ATPases Associadas a Diversas Atividades Celulares/antagonistas & inibidores , Proteínas de Ligação a DNA/antagonistas & inibidores , Desenho de Fármacos , Descoberta de Drogas/métodos , Ensaios de Triagem em Larga Escala/métodos , Domínios Proteicos , Bibliotecas de Moléculas Pequenas/farmacologia , ATPases Associadas a Diversas Atividades Celulares/química , ATPases Associadas a Diversas Atividades Celulares/metabolismo , Fenômenos Biofísicos , Domínio Catalítico , Proteínas de Ligação a DNA/química , Proteínas de Ligação a DNA/metabolismo , Humanos , Modelos Moleculares , Estrutura Molecular , Ligação Proteica/efeitos dos fármacos , Bibliotecas de Moléculas Pequenas/química , Bibliotecas de Moléculas Pequenas/metabolismo
14.
Front Plant Sci ; 9: 1659, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30510558

RESUMO

Screening for natural products which bind to proteins in planta has been used to identify ligands of the plant-specific glutathione transferase (GST) tau (U) and phi (F) classes, that are present in large gene families in crops and weeds, but have largely undefined functions. When expressed as recombinant proteins in Escherichia coli these proteins have been found to tightly bind a diverse range of natural product ligands, with fatty acid-and porphyrinogen-derivatives associated with GSTUs and a range of heterocyclic compounds with GSTFs. With an interest in detecting the natural binding partners of these proteins in planta, we have expressed the two best characterized GSTs from Arabidopsis thaliana (At), AtGSTF2 and AtGSTU19, as Strep-tagged fusion proteins in planta. Following transient and stable expression in Nicotiana and Arabidopsis, respectively, the GSTs were recovered using Strep-Tactin affinity chromatography and the bound ligands desorbed and characterized by LC-MS. AtGSTF2 predominantly bound phenolic derivatives including S-glutathionylated lignanamides and methylated variants of the flavonols kaempferol and quercetin. AtGSTU19 captured glutathionylated conjugates of oxylipins, indoles, and lignanamides. Whereas the flavonols and oxylipins appeared to be authentic in vivo ligands, the glutathione conjugates of the lignanamides and indoles were artifacts formed during extraction. When tested for their binding characteristics, the previously undescribed indole conjugates were found to be particularly potent inhibitors of AtGSTU19. Such ligand fishing has the potential to both give new insight into protein function in planta as well as identifying novel classes of natural product inhibitors of enzymes of biotechnological interest such as GSTs.

15.
Phytochemistry ; 67(14): 1427-34, 2006 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-16797619

RESUMO

A glutathione transferase (GST) related to the theta (T) class of enzymes found in plants and animals has been cloned from the potato pathogen Phytophthora infestans. The cDNA encoded a 25kDa polypeptide termed PiGSTT1 which was expressed in E. coli as the native protein. The purified recombinant enzyme behaved as a dimer (PiGSTT1-1) and while being unable to catalyse the glutathione conjugation of 1-chloro-2,4-dintrobenzene, was highly active as a glutathione peroxidase with organic hydroperoxide substrates. In addition to reducing the synthetic substrate cumene hydroperoxide, PiGSTT1-1 was shown to be highly active toward 9(S)-hydroperoxy-(10E,12Z,15Z)-octadecatrienoic acid=9(S)-HPOT, which is formed in potato plants during infection by P. infestans as a precursor of the antifungal oxylipin colnelenic acid. An antiserum was raised to PiGSTT1-1 and used to demonstrate that the respective enzyme was abundantly expressed in P. infestans both cultured on pea agar and during the infection of potato plants.


Assuntos
Glutationa Transferase/genética , Glutationa Transferase/metabolismo , Phytophthora/enzimologia , Phytophthora/genética , Solanum tuberosum/microbiologia , Sequência de Aminoácidos , Clonagem Molecular , Sequência Conservada , Expressão Gênica , Glutationa Transferase/química , Glutationa Transferase/classificação , Humanos , Ácido Linoleico/química , Ácido Linoleico/metabolismo , Dados de Sequência Molecular , Filogenia , Doenças das Plantas , Alinhamento de Sequência
16.
Plant Sci ; 171(3): 360-6, 2006 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-22980205

RESUMO

Tyrosine catabolism is an essential pathway in animals, but its role in plants is unclear. The first steps of tyrosine degradation lead to the formation of homogentisate. In animals this is then sequentially acted on by homogentisate dioxygenase (HGO), maleylacetoacetate isomerase (MAAI) and fumarylacetoacetate hydrolase (FAH) to generate fumarate and acetoacetate. In plants, homogentisate is used to generate the essential redox metabolites tocopherol and plastoquinone, which effectively act as an alternative metabolic fate for tyrosine. Having determined that a zeta class glutathione transferase from Arabidopsis thaliana is a functional MAAI, we have looked for evidence that the mammalian degradation pathway could also operate in plants. Based on array and quantitative PCR experiments, the A. thaliana homologues AtHGO, AtMAAI and AtFAH could be shown to be expressed, with AtHGO and AtMAAI showing evidence of co-regulation. cDNAs encoding AtHGO, AtMAAI and AtFAH were cloned in Escherichia coli and shown to represent a fully functional catabolic pathway when combined in vitro. The significance of this pathway, including increased transcription of the associated enzymes in senescing tissue, compartmentalisation and impact on flux into synthesis of Vitamin E and other tocopherols of biotechnological interest is discussed.

17.
Methods Enzymol ; 401: 169-86, 2005.
Artigo em Inglês | MEDLINE | ID: mdl-16399386

RESUMO

Soluble plant glutathione transferases (GSTs) consist of seven distinct classes, six of which have been functionally characterized. The phi and tau class GSTs are specific to plants and the most numerous and abundant of these enzymes. Both have classic conjugating activities toward a diverse range of xenobiotics, including pesticides, where they are major determinants of herbicide selectivity in crops and weeds. In contrast, the zeta and theta class GSTs are conserved in animals and plants and have very restricted activities toward xenobiotics. Theta GSTs function as glutathione peroxidases, reducing organic hydroperoxides produced during oxidative stress. Zeta GSTs act as glutathione-dependent isomerases, catalyzing the conversion of maleylacetoacetate to fumarylacetoacetate, the penultimate step in tyrosine degradation. The other two classes of plant GSTs, the dehydroascorbate reductases (DHARs) and lambda GSTs, differ from phi, tau, zeta, and theta enzymes in being monomers rather than dimers and possessing a catalytic cysteine rather than serine in the active site. Both can function as thioltransferases, with the DHARs having a specialized function in reducing dehydroascorbate to ascorbic acid. The determination of the diverse plant-specific functions of the differing GST classes is described.


Assuntos
Glutationa Transferase , Isoenzimas , Proteínas de Plantas , Ácidos Carboxílicos/química , Ácidos Carboxílicos/metabolismo , Glutationa Transferase/química , Glutationa Transferase/genética , Glutationa Transferase/metabolismo , Isoenzimas/química , Isoenzimas/genética , Isoenzimas/metabolismo , Peróxidos Lipídicos/química , Peróxidos Lipídicos/metabolismo , Estrutura Molecular , Proteínas de Plantas/química , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Subunidades Proteicas/química , Subunidades Proteicas/genética , Subunidades Proteicas/metabolismo
18.
Z Naturforsch C J Biosci ; 60(3-4): 307-16, 2005.
Artigo em Inglês | MEDLINE | ID: mdl-15948600

RESUMO

By learning lessons from weed science we have adopted three approaches to make plants more effective in phytoremediation: (1) The application of functional genomics to identify key components involved in the detoxification of, or tolerance to, xenobiotics for use in subsequent genetic engineering/breeding programmes. (2) The rational metabolic engineering of plants through the use of forced evolution of protective enzymes, or alternatively transgenesis of detoxification pathways. (3) The use of chemical treatments which protect plants from herbicide injury. In this paper we examine the regulation of the xenome by herbicide safeners, which are chemicals widely used in crop protection due to their ability to enhance herbicide selectivity in cereals. We demonstrate that these chemicals act to enhance two major groups of phase 2 detoxification enzymes, notably the glutathione transferases and glucosyltransferases, in both cereals and the model plant Arabidopsis thaliana, with the safeners acting in a chemical- and species-specific manner. Our results demonstrate that by choosing the right combination of safener and plant it should be possible to enhance the tolerance of diverse plants to a wide range of xenobiotics including pollutants.


Assuntos
Arabidopsis/enzimologia , Glucosiltransferases/biossíntese , Glutationa Transferase/biossíntese , Herbicidas/farmacocinética , Triticum/enzimologia , Zea mays/enzimologia , Biodegradação Ambiental , Indução Enzimática , Engenharia Genética
19.
J Med Chem ; 58(15): 6151-78, 2015 Aug 13.
Artigo em Inglês | MEDLINE | ID: mdl-26230603

RESUMO

ATAD2 is a bromodomain-containing protein whose overexpression is linked to poor outcomes in a number of different cancer types. To date, no potent and selective inhibitors of the bromodomain have been reported. This article describes the structure-based optimization of a series of naphthyridones from micromolar leads with no selectivity over the BET bromodomains to inhibitors with sub-100 nM ATAD2 potency and 100-fold BET selectivity.


Assuntos
Adenosina Trifosfatases/antagonistas & inibidores , Proteínas de Ligação a DNA/antagonistas & inibidores , Naftiridinas/química , Naftiridinas/farmacologia , ATPases Associadas a Diversas Atividades Celulares , Adenosina Trifosfatases/química , Proteínas de Ligação a DNA/química , Modelos Moleculares , Estrutura Molecular
20.
J Med Chem ; 58(14): 5649-73, 2015 Jul 23.
Artigo em Inglês | MEDLINE | ID: mdl-26155854

RESUMO

Overexpression of ATAD2 (ATPase family, AAA domain containing 2) has been linked to disease severity and progression in a wide range of cancers, and is implicated in the regulation of several drivers of cancer growth. Little is known of the dependence of these effects upon the ATAD2 bromodomain, which has been categorized as among the least tractable of its class. The absence of any potent, selective inhibitors limits clear understanding of the therapeutic potential of the bromodomain. Here, we describe the discovery of a hit from a fragment-based targeted array. Optimization of this produced the first known micromolar inhibitors of the ATAD2 bromodomain.


Assuntos
Adenosina Trifosfatases/antagonistas & inibidores , Adenosina Trifosfatases/química , Descoberta de Drogas , Inibidores Enzimáticos/química , Inibidores Enzimáticos/farmacologia , Adenosina Trifosfatases/metabolismo , Sequência de Aminoácidos , Antineoplásicos/química , Antineoplásicos/farmacologia , Humanos , Modelos Moleculares , Dados de Sequência Molecular , Estrutura Terciária de Proteína , Quinolonas/química , Quinolonas/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA