Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Rev Neurosci ; 29(8): 817-824, 2018 11 27.
Artigo em Inglês | MEDLINE | ID: mdl-29791316

RESUMO

The exon junction complex (EJC) consists of four core proteins: Magoh, RNA-binding motif 8A (Rbm8a, also known as Y14), eukaryotic initiation factor 4A3 (eIF4A3, also known as DDX48), and metastatic lymph node 51 (MLN51, also known as Casc3 or Barentsz), which are involved in the regulation of many processes occurring between gene transcription and protein translation. Its main role is to assemble into spliceosomes at the exon-exon junction of mRNA during splicing. It is, therefore, a range of functions concerning post-splicing events such as mRNA translocation, translation, and nonsense-mediated mRNA decay (NMD). Apart from this, proteins of the EJC control the splicing of specific pre-mRNAs, for example, splicing of the mapk transcript. Recent studies support essential functions of EJC proteins in oocytes and, after fertilization, in all stages of zygote development, as well as the growth of the embryo, including the development of the nervous system. During the development of the central nervous system (CNS), the EJC controls mitosis, regulating both symmetric and asymmetric cell divisions. Reduced levels of EJC components cause microcephaly. In the adult brain, Y14 and eIF4A3 appear to be involved in synaptic plasticity and in learning and memory. In this review, we focus on the involvement of EJC components in brain development and its functioning under normal conditions.


Assuntos
Sistema Nervoso Central/metabolismo , Fator de Iniciação 4A em Eucariotos/metabolismo , Éxons/genética , Proteínas de Ligação a RNA/genética , Fator de Iniciação 4A em Eucariotos/genética , Humanos , Splicing de RNA/genética , Proteínas de Ligação a RNA/metabolismo
2.
Int J Biochem Cell Biol ; 99: 178-185, 2018 06.
Artigo em Inglês | MEDLINE | ID: mdl-29660399

RESUMO

CacyBP/SIP interacts with Hsp90 and is able to protect proteins from denaturation and/or aggregation induced by elevated temperature. In this work we studied the influence of different stress factors on CacyBP/SIP level in HEp-2 cells. We have found that H2O2 and radicicol treatment resulted in a significant increase (up to 40%) in the CacyBP/SIP level. We have also found that HEp-2 cells overexpressing CacyBP/SIP were more resistant to stress-induced death. Further studies have revealed that the Hsf1 transcription factor binds to the CacyBP/SIP gene promoter and up-regulates CacyBP/SIP expression under stress conditions. To check whether the CacyBP/SIP protein might play a role in stress responses in vivo, we analyzed its level in selected brain structures of control and stressed mice. We have found that the level of the CacyBP/SIP protein was higher in the thalamus/hypothalamus, hippocampus and brainstem of stressed mice. Thus, the presented results clearly indicate that CacyBP/SIP is involved in cellular stress response.


Assuntos
Proteínas de Ligação ao Cálcio/metabolismo , Regulação da Expressão Gênica , Proteínas de Choque Térmico HSP90/metabolismo , Estresse Fisiológico , Animais , Proteínas de Ligação ao Cálcio/genética , Proteínas de Choque Térmico HSP90/genética , Peróxido de Hidrogênio/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Oxidantes/metabolismo , Fosforilação , Ligação Proteica
3.
Brain Struct Funct ; 223(4): 1779-1795, 2018 May.
Artigo em Inglês | MEDLINE | ID: mdl-29214509

RESUMO

The gray short-tailed opossum (Monodelphis domestica) is a small marsupial gaining recognition as a laboratory animal in biomedical research. Despite numerous studies on opossum neuroanatomy, a consistent and comprehensive neuroanatomical reference for this species is still missing. Here we present the first three-dimensional, multimodal atlas of the Monodelphis opossum brain. It is based on four complementary imaging modalities: high resolution ex vivo magnetic resonance images, micro-computed tomography scans of the cranium, images of the face of the cutting block, and series of sections stained with the Nissl method and for myelinated fibers. Individual imaging modalities were reconstructed into a three-dimensional form and then registered to the MR image by means of affine and deformable registration routines. Based on a superimposition of the 3D images, 113 anatomical structures were demarcated and the volumes of individual regions were measured. The stereotaxic coordinate system was defined using a set of cranial landmarks: interaural line, bregma, and lambda, which allows for easy expression of any location within the brain with respect to the skull. The atlas is released under the Creative Commons license and available through various digital atlasing web services.


Assuntos
Encéfalo/anatomia & histologia , Encéfalo/diagnóstico por imagem , Imageamento Tridimensional/métodos , Imageamento por Ressonância Magnética/métodos , Monodelphis/anatomia & histologia , Fatores Etários , Animais , Crioultramicrotomia , Neuroanatomia , Valores de Referência , Técnicas Estereotáxicas
4.
Acta Neurobiol Exp (Wars) ; 67(4): 421-38, 2007.
Artigo em Inglês | MEDLINE | ID: mdl-18320720

RESUMO

This study describes the topography, borders and divisions of the globus pallidus in the Brazilian short-tailed opossum (Monodelphis domestica) and distribution of the three calcium binding proteins, parvalbumin (PV), calbindin D-28k (CB) and calretinin (CR) in that nucleus. The globus pallidus of the opossum consists of medial and lateral parts that are visible with Nissl or Timm's staining and also in PV and CR immunostained sections. Neurons of the globus pallidus expressing these proteins were classified into three types on the basis of size and shape of their soma and dendritic tree. Type 1 neurons had medium-sized fusiform soma with dendrites sprouting from the opposite poles. Neurons of the type 2 had medium-to-large, multipolar soma with scarce, thin dendrites. Cell bodies of type 3 neurons were small and either ovoid or round. Immunostaining showed that the most numerous were neurons expressing PV that belonged to all three types. Density of the PV-immunopositive fibers and puncta correlated with the density of the PV-labeled neurons. Labeling for CB resulted mainly in the light staining of neuropil in both parts of the nucleus, while the CB-expressing cells (mainly of the type 2) were scarce and placed only along the border of the globus pallidus and putamen. Staining for calretinin resulted in labeling almost exclusively the immunoreactive puncta and fibers that were distributed with medium-to-high density throughout the nucleus. Close to the border of globus pallidus with the putamen these fibers (probably dendrites) were long, thin and varicous, while more medially bundles of thick, short and smooth fibers predominated. Single CR-ir neurons (all of the type 3) were scattered through the globus pallidus. Colocalization of two calcium binding proteins in one neuron was. never observed. The CB-ir puncta (probably terminals of axons projecting to the nucleus) frequently formed basket-like structures around the PV-ir neurons. Therefore, the globus pallidus in the opossum, much as that in the rat, consists of a heterogeneous population of neurons, probably playing diversified functions.


Assuntos
Proteínas de Ligação ao Cálcio/metabolismo , Globo Pálido/citologia , Globo Pálido/metabolismo , Monodelphis/anatomia & histologia , Animais , Anticorpos/farmacologia , Brasil , Calbindina 1 , Calbindina 2 , Calbindinas , Proteínas de Ligação ao Cálcio/imunologia , Feminino , Imuno-Histoquímica , Masculino , Vias Neurais , Neurônios/metabolismo , Parvalbuminas/imunologia , Parvalbuminas/metabolismo , Proteína G de Ligação ao Cálcio S100/imunologia , Proteína G de Ligação ao Cálcio S100/metabolismo , Especificidade da Espécie
5.
Dev Neurobiol ; 74(7): 707-22, 2014 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-24443161

RESUMO

The expression, development pattern, spatiotemporal distribution, and function of TrkB receptors were investigated during the postnatal brain development of the opossum. Full-length TrkB receptor expression was detectable in the newborn opossum, whereas three different short forms that are expressed in the adult brain were almost undetectable in the newborn opossum brain. The highest level of full-length TrkB receptor expression was observed at P35, which corresponds to the time of eye opening. We found that in different brain structures, TrkB receptors were localized in various compartments of cells. The hypothalamus was distinguished by the presence of TrkB receptors not only in cell bodies but also in the neuropil. Double immunofluroscent staining for TrkB and a marker for the identification of the cell phenotype in several brain regions such as the olfactory bulb, hippocampus, thalamus, and cerebellum showed that unlike in eutherians, in the opossum, TrkB receptors were predominantly expressed in neurons. A lack of TrkB receptors in glial cells, particularly astrocytes and oligodendrocytes, provides evidence that TrkB receptors can play a functionally different role in marsupials than in eutherians. The effects of TrkB signaling on the development of cortical progenitor cells were examined in vitro using shRNAs. Blockade of the endogenous TrkB receptor expression induced a decrease in the number of progenitor cells proliferation, whereas the number of apoptotic progenitor cells increased. These changes were statistically significant but relatively small. In contrast, TrkB signaling was strongly involved in regulation of the cortical progenitor cell differentiation process.


Assuntos
Encéfalo/crescimento & desenvolvimento , Encéfalo/fisiologia , Monodelphis/crescimento & desenvolvimento , Monodelphis/fisiologia , Receptor trkB/metabolismo , Fatores Etários , Animais , Apoptose/fisiologia , Western Blotting , Proliferação de Células , Células Cultivadas , Imunofluorescência , Regulação da Expressão Gênica no Desenvolvimento , Células-Tronco Neurais/fisiologia , Neurogênese/fisiologia , Neuroglia/fisiologia , Neurônios/fisiologia , Fotomicrografia , RNA Interferente Pequeno/metabolismo , Receptor trkB/genética , Transfecção
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA