Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Artigo em Inglês | MEDLINE | ID: mdl-31767720

RESUMO

Multidrug-resistant Enterobacteriaceae (MRE) colonize the intestine asymptomatically from where they can breach into the bloodstream and cause life-threatening infections, especially in heavily colonized patients. Despite the clinical relevance of MRE colonization levels, we know little about how they vary in hospitalized patients and the clinical factors that determine those levels. Here, we conducted one of the largest studies of MRE fecal levels by tracking longitudinally 133 acute leukemia patients and monitoring their MRE levels over time through extensive culturing. MRE were defined as Enterobacteriaceae species that acquired nonsusceptibility to ≥1 agent in ≥3 antimicrobial categories. In addition, due to the selective media used, the MRE had to be resistant to third-generation cephalosporins. MRE were detected in 60% of the patients, but their fecal levels varied considerably among patients and within the same patient (>6 and 4 orders of magnitude, respectively). Multivariate analysis of clinical metadata revealed an impact of intravenous beta-lactams (i.e., meropenem and piperacillin-tazobactam), which significantly diminished the fecal MRE levels in hospitalized patients. Consistent with a direct action of beta-lactams, we found an effect only when the patient was colonized with strains sensitive to the administered beta-lactam (P < 0.001) but not with nonsusceptible strains. We report previously unobserved inter- and intraindividual heterogeneity in MRE fecal levels, suggesting that quantitative surveillance is more informative than qualitative surveillance of hospitalized patients. In addition, our study highlights the relevance of incorporating antibiotic treatment and susceptibility data of gut-colonizing pathogens for future clinical studies and in clinical decision-making.


Assuntos
Antibacterianos/efeitos adversos , Farmacorresistência Bacteriana Múltipla , Enterobacteriaceae/efeitos dos fármacos , Fezes/microbiologia , beta-Lactamas/efeitos adversos , Antibacterianos/administração & dosagem , Antibacterianos/farmacologia , Cefalosporinas/farmacologia , Meios de Cultura , Hospitalização , Humanos , Injeções Intravenosas , Leucemia/complicações , Testes de Sensibilidade Microbiana , Estudos Prospectivos , beta-Lactamas/administração & dosagem , beta-Lactamas/farmacologia
2.
J Infect Chemother ; 25(8): 605-609, 2019 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-31023570

RESUMO

BACKGROUND: Bacterial infections in immunocompromised patients are associated with a high mortality and morbidity rate. In this high-risk group, the presence of multidrug-resistant (MDR) bacteria, particularly bacteria that harbor a transferable antibiotic resistance gene, complicates the management of bacterial infections. In this study, we investigated the presence of the transferable colistin resistance mcr genes in patients with leukemia in Spain. METHODS: 217 fecal samples collected in 2013-2015 from 56 patients with acute leukemia and colonized with MDR Enterobacteriaceae strains, were screened on September 2017 for the presence of the colistin resistance mcr genes (mcr-1 to -5) by multiplex PCR. mcr positive strains selected on LBJMR and MacConkey supplemented with colistin (2 µg/ml) media were phenotypically and molecularly characterized by antimicrobial susceptibility testing, minimum inhibitory concentration, multilocus sequence typing and plasmid characterization. RESULTS: Among 217 fecal samples, 5 samples collected from 3 patients were positive for the presence of the mcr-1 colistin-resistance gene. Four Escherichia coli strains were isolated and exhibited resistance to colistin with MIC = 4 µg/ml. Other genes conferring the resistance to ß-lactam antibiotics have also been identified in mcr-1 positive strains, including blaTEM-206 and blaTEM-98. Three different sequence types were identified, including ST1196, ST140 and ST10. Plasmid characterization allowed us to detect the mcr-1 colistin resistance gene on conjugative IncP plasmid type. CONCLUSION: To the best of our knowledge, we have identified the mcr-1 gene for the first time in leukemia patients in Spain. In light of these results, strict measures have been implemented to prevent its dissemination.


Assuntos
Colistina/farmacologia , Farmacorresistência Bacteriana/genética , Proteínas de Escherichia coli/genética , Escherichia coli/efeitos dos fármacos , Escherichia coli/genética , Leucemia/microbiologia , Plasmídeos/genética , Antibacterianos/farmacologia , Infecções por Escherichia coli/tratamento farmacológico , Infecções por Escherichia coli/microbiologia , Humanos , Testes de Sensibilidade Microbiana/métodos , Pessoa de Meia-Idade , Espanha , beta-Lactamases/genética
3.
Vet Res ; 49(1): 123, 2018 Dec 20.
Artigo em Inglês | MEDLINE | ID: mdl-30572930

RESUMO

Epizootic rabbit enteropathy (ERE) represents one of the most devastating diseases affecting rabbit farms. Previous studies showing transmissibility of disease symptoms through oral inoculation of intestinal contents from sick animals suggested a bacterial infectious origin for ERE. However, no etiological agent has been identified yet. On the other hand, ERE is associated with major changes in intestinal microbial communities, pinpointing dysbiosis as an alternative cause for the disease. To better understand the role of intestinal bacteria in ERE development, we have performed a prospective longitudinal study in which intestinal samples collected from the same animals before, during and after disease onset were analyzed using high-throughput sequencing. Changes in hundreds of bacterial groups were detected after the initiation of ERE. In contrast, before ERE onset, the microbiota from rabbits that developed ERE did not differ from those that remained healthy. Notably, an expansion of a single novel Clostridium species (Clostridium cuniculi) was detected the day of ERE onset. C. cuniculi encodes several putative toxins and it is phylogenetically related to the two well-characterized pathogens C. botulinum and C. perfringens. Our results are consistent with a bacterial infectious origin of ERE and discard dysbiosis as the initial trigger of the disease. Although experimental validation is required, results derived from sequencing analysis, propose a key role of C. cuniculi in ERE initiation.


Assuntos
Infecções por Clostridium/veterinária , Clostridium/fisiologia , Microbioma Gastrointestinal , Enteropatias/microbiologia , Intestinos/microbiologia , Coelhos , Animais , Clostridium/classificação , Infecções por Clostridium/microbiologia , Estudos Longitudinais , Estudos Prospectivos
4.
J Antimicrob Chemother ; 72(1): 128-136, 2017 01.
Artigo em Inglês | MEDLINE | ID: mdl-27707993

RESUMO

BACKGROUND: Oral vancomycin remains the mainstay of therapy for severe infections produced by Clostridium difficile, the most prevalent cause of healthcare-associated infectious diarrhoea in developed countries. However, its short- and long-term effects on the human intestinal microbiota remain largely unknown. METHODS: We utilized high-throughput sequencing to analyse the effects of vancomycin on the faecal human microbiota up to 22 weeks post-antibiotic cessation. The clinical relevance of the observed microbiota perturbations was studied in mice. RESULTS: During vancomycin therapy, most intestinal microbiota genera and operational taxonomic units (OTUs) were depleted in all analysed subjects, including all baseline OTUs from the phylum Bacteroidetes. This was accompanied by a vast expansion of genera associated with infections, including Klebsiella and Escherichia/Shigella. Following antibiotic cessation, marked differences in microbiota resilience were observed among subjects. While some individuals recovered a microbiota close to baseline composition, in others, up to 89% of abundant OTUs could no longer be detected. The clinical relevance of the observed microbiota changes was further demonstrated in mice, which developed analogous microbiota alterations. During vancomycin treatment, mice were highly susceptible to intestinal colonization by an antibiotic-resistant pathogen and, upon antibiotic cessation, a less-resilient microbiota allowed higher levels of pathogen colonization. CONCLUSIONS: Oral vancomycin induces drastic and consistent changes in the human intestinal microbiota. Upon vancomycin cessation, the microbiota recovery rate varied considerably among subjects, which could influence, as validated in mice, the level of susceptibility to pathogen intestinal colonization. Our results demonstrate the negative long-term effects of vancomycin, which should be considered as a fundamental aspect of the cost-benefit equation for antibiotic prescription.


Assuntos
Antibacterianos/administração & dosagem , Microbioma Gastrointestinal/efeitos dos fármacos , Microbiota/efeitos dos fármacos , Vancomicina/administração & dosagem , Administração Oral , Animais , Fezes/microbiologia , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Metagenômica/métodos , Camundongos , Modelos Animais , Tempo
5.
Nat Microbiol ; 9(6): 1555-1565, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38698178

RESUMO

The detection of oral bacteria in faecal samples has been associated with inflammation and intestinal diseases. The increased relative abundance of oral bacteria in faeces has two competing explanations: either oral bacteria invade the gut ecosystem and expand (the 'expansion' hypothesis), or oral bacteria transit through the gut and their relative increase marks the depletion of other gut bacteria (the 'marker' hypothesis). Here we collected oral and faecal samples from mouse models of gut dysbiosis (antibiotic treatment and DSS-induced colitis) and used 16S ribosomal RNA sequencing to determine the abundance dynamics of oral bacteria. We found that the relative, but not absolute, abundance of oral bacteria increases, reflecting the 'marker' hypothesis. Faecal microbiome datasets from diverse patient cohorts, including healthy individuals and patients with allogeneic haematopoietic cell transplantation or inflammatory bowel disease, consistently support the 'marker' hypothesis and explain associations between oral bacterial abundance and patient outcomes consistent with depleted gut microbiota. By distinguishing between the two hypotheses, our study guides the interpretation of microbiome compositional data and could potentially identify cases where therapies are needed to rebuild the resident microbiome rather than protect against invading oral bacteria.


Assuntos
Bactérias , Disbiose , Fezes , Microbioma Gastrointestinal , Boca , RNA Ribossômico 16S , Fezes/microbiologia , Humanos , Animais , Camundongos , Bactérias/classificação , Bactérias/genética , Bactérias/isolamento & purificação , RNA Ribossômico 16S/genética , Disbiose/microbiologia , Boca/microbiologia , Colite/microbiologia , Modelos Animais de Doenças , Doenças Inflamatórias Intestinais/microbiologia , Antibacterianos/farmacologia , Camundongos Endogâmicos C57BL , Feminino , Sulfato de Dextrana
6.
Infect Immun ; 81(3): 965-73, 2013 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-23319552

RESUMO

Bacteria causing infections in hospitalized patients are increasingly antibiotic resistant. Classical infection control practices are only partially effective at preventing spread of antibiotic-resistant bacteria within hospitals. Because the density of intestinal colonization by the highly antibiotic-resistant bacterium vancomycin-resistant Enterococcus (VRE) can exceed 10(9) organisms per gram of feces, even optimally implemented hygiene protocols often fail. Decreasing the density of intestinal colonization, therefore, represents an important approach to limit VRE transmission. We demonstrate that reintroduction of a diverse intestinal microbiota to densely VRE-colonized mice eliminates VRE from the intestinal tract. While oxygen-tolerant members of the microbiota are ineffective at eliminating VRE, administration of obligate anaerobic commensal bacteria to mice results in a billionfold reduction in the density of intestinal VRE colonization. 16S rRNA gene sequence analysis of intestinal bacterial populations isolated from mice that cleared VRE following microbiota reconstitution revealed that recolonization with a microbiota that contains Barnesiella correlates with VRE elimination. Characterization of the fecal microbiota of patients undergoing allogeneic hematopoietic stem cell transplantation demonstrated that intestinal colonization with Barnesiella confers resistance to intestinal domination and bloodstream infection with VRE. Our studies indicate that obligate anaerobic bacteria belonging to the Barnesiella genus enable clearance of intestinal VRE colonization and may provide novel approaches to prevent the spread of highly antibiotic-resistant bacteria.


Assuntos
Bacteroidaceae/fisiologia , Enterococcus faecium/efeitos dos fármacos , Infecções por Bactérias Gram-Positivas/terapia , Intestinos/microbiologia , Resistência a Vancomicina , Animais , DNA Bacteriano , Feminino , Camundongos , Camundongos Endogâmicos C57BL , RNA Bacteriano/genética , RNA Ribossômico 16S/genética
7.
Cell Host Microbe ; 31(7): 1126-1139.e6, 2023 07 12.
Artigo em Inglês | MEDLINE | ID: mdl-37329880

RESUMO

Longitudinal microbiome data provide valuable insight into disease states and clinical responses, but they are challenging to mine and view collectively. To address these limitations, we present TaxUMAP, a taxonomically informed visualization for displaying microbiome states in large clinical microbiome datasets. We used TaxUMAP to chart a microbiome atlas of 1,870 patients with cancer during therapy-induced perturbations. Bacterial density and diversity were positively associated, but the trend was reversed in liquid stool. Low-diversity states (dominations) remained stable after antibiotic treatment, and diverse communities had a broader range of antimicrobial resistance genes than dominations. When examining microbiome states associated with risk for bacteremia, TaxUMAP revealed that certain Klebsiella species were associated with lower risk for bacteremia localize in a region of the atlas that is depleted in high-risk enterobacteria. This indicated a competitive interaction that was validated experimentally. Thus, TaxUMAP can chart comprehensive longitudinal microbiome datasets, enabling insights into microbiome effects on human health.


Assuntos
Bacteriemia , Microbioma Gastrointestinal , Microbiota , Humanos , Microbioma Gastrointestinal/genética , Antibacterianos/farmacologia , Antibacterianos/uso terapêutico , Bactérias/genética
8.
Nat Commun ; 13(1): 5617, 2022 09 24.
Artigo em Inglês | MEDLINE | ID: mdl-36153315

RESUMO

Infections by multidrug-resistant Enterobacteriaceae (MRE) are life-threatening to patients. The intestinal microbiome protects against MRE colonization, but antibiotics cause collateral damage to commensals and open the way to colonization and subsequent infection. Despite the significance of this problem, the specific commensals and mechanisms that restrict MRE colonization remain largely unknown. Here, by performing a multi-omic prospective study of hospitalized patients combined with mice experiments, we find that Lactobacillus is key, though not sufficient, to restrict MRE gut colonization. Lactobacillus rhamnosus and murinus increase the levels of Clostridiales bacteria, which induces a hostile environment for MRE growth through increased butyrate levels and reduced nutrient sources. This mechanism of colonization resistance, an interaction between Lactobacillus spp. and Clostridiales involving cooperation between microbiota members, is conserved in mice and patients. These results stress the importance of exploiting microbiome interactions for developing effective probiotics that prevent infections in hospitalized patients.


Assuntos
Enterobacteriaceae , Lactobacillus , Animais , Antibacterianos/farmacologia , Butiratos/farmacologia , Clostridiales , Camundongos , Estudos Prospectivos
9.
Curr Opin Microbiol ; 63: 150-157, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34352595

RESUMO

The gut microbiome is an ecosystem. Natural selection favored microbes fit for the gut, which can utilize and convert molecules produced by the host for their own benefit. But natural selection also favored the host's mechanisms to sense and respond to the microbial ecosystem for its own benefit. We can listen in on the host-microbiome 'conversation' in the simultaneous responses of the microbiome and the host to strong perturbations. In laboratory animals a perturbation can be done for research; in human patients a perturbation can be caused by disease or therapy. Advances in metagenomics, metabolomics and computation amplify our means to listen in on the conversation between the gut microbiome and its host.


Assuntos
Microbioma Gastrointestinal , Microbiota , Animais , Microbioma Gastrointestinal/genética , Humanos , Metabolômica , Metagenômica
10.
Artigo em Inglês | MEDLINE | ID: mdl-31687131

RESUMO

Background: The emergence of carbapenemase-producing (CP) Citrobacter freundii poses a significant threat to public health, especially in high-risk populations. In this study, whole genome sequencing was used to characterize the carbapenem resistance mechanism of three C. freundii clinical isolates recovered from fecal samples of patients with acute leukemia (AL) from Spain. Materials and methods: Twelve fecal samples, collected between 2013 and 2015 from 9 patients with AL, were screened for the presence of CP strains by selecting them on MacConkey agar supplemented with ertapenem (0.5 mg/L). Bacteria were identified by MALDI-TOF mass spectrometry and were phenotypically characterized. Whole genome sequencing of C. freundii isolates was performed using the MinION and MiSeq Illumina sequencers. Bioinformatic analysis was performed in order to identify the molecular support of carbapenem resistance and to study the genetic environment of carbapenem resistance encoding genes. Results: Three carbapenem-resistant C. freundii strains (imipenem MIC≥32 mg/L) corresponding to three different AL patients were isolated. Positive modified Carba NP test results suggested carbapenemase production. The genomes of each C. freundii tested were assembled into a single chromosomal contig and plasmids contig. In all the strains, the carbapenem resistance was due to the coproduction of OXA-48 and VIM-1 enzymes encoded by genes located on chromosome and on an IncHI2 plasmid, respectively. According to the MLST and the SNPs analysis, all strains belonged to the same clone ST169. Conclusion: We report in our study, the intestinal carrying of C. freundii clone ST169 coproducing OXA-48 and VIM-1 identified in leukemic patients.


Assuntos
Proteínas de Bactérias/genética , Citrobacter freundii/classificação , Citrobacter freundii/genética , Infecções por Enterobacteriaceae/epidemiologia , Infecções por Enterobacteriaceae/etiologia , Genoma Bacteriano , Genômica , Leucemia/complicações , beta-Lactamases/genética , Citrobacter freundii/efeitos dos fármacos , Genômica/métodos , Humanos , Vigilância em Saúde Pública , Espanha/epidemiologia
11.
Proteomes ; 7(1)2019 Jan 08.
Artigo em Inglês | MEDLINE | ID: mdl-30626002

RESUMO

The microbiome has a strong impact on human health and disease and is, therefore, increasingly studied in a clinical context. Metaproteomics is also attracting considerable attention, and such data can be efficiently generated today owing to improvements in mass spectrometry-based proteomics. As we will discuss in this study, there are still major challenges notably in data analysis that need to be overcome. Here, we analyzed 212 fecal samples from 56 hospitalized acute leukemia patients with multidrug-resistant Enterobactericeae (MRE) gut colonization using metagenomics and metaproteomics. This is one of the largest clinical metaproteomic studies to date, and the first metaproteomic study addressing the gut microbiome in MRE colonized acute leukemia patients. Based on this substantial data set, we discuss major current limitations in clinical metaproteomic data analysis to provide guidance to researchers in the field. Notably, the results show that public metagenome databases are incomplete and that sample-specific metagenomes improve results. Furthermore, biological variation is tremendous which challenges clinical study designs and argues that longitudinal measurements of individual patients are a valuable future addition to the analysis of patient cohorts.

12.
Clin Transl Immunology ; 6(2): e128, 2017 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-28243438

RESUMO

Hundreds of commensal bacterial species inhabit the gastrointestinal tract. This diverse microbial ecosystem plays a crucial role in the prevention and resolution of infectious diseases. In this review we will describe the major mechanisms by which the intestinal microbiota confers protection against infections, focusing on those caused by intestinal bacterial pathogens. These mechanisms include both non-immune- and immune-cell-mediated pathways, notably through bacterial production of inhibitory molecules and nutrient deprivation by the former and innate lymphoid cell-, myeloid cell- or lymphocyte-dependent stimulation by the latter. Finally, we will discuss novel therapeutic approaches based on commensal microbes and their products, which could potentially be used to combat infections.

13.
Cell Rep ; 10(11): 1861-71, 2015 Mar 24.
Artigo em Inglês | MEDLINE | ID: mdl-25801025

RESUMO

The mammalian gut microbiota harbors a diverse ecosystem where hundreds of bacterial species interact with each other and their host. Given that bacteria use signals to communicate and regulate group behaviors (quorum sensing), we asked whether such communication between different commensal species can influence the interactions occurring in this environment. We engineered the enteric bacterium, Escherichia coli, to manipulate the levels of the interspecies quorum sensing signal, autoinducer-2 (AI-2), in the mouse intestine and investigated the effect upon antibiotic-induced gut microbiota dysbiosis. E. coli that increased intestinal AI-2 levels altered the composition of the antibiotic-treated gut microbiota, favoring the expansion of the Firmicutes phylum. This significantly increased the Firmicutes/Bacteroidetes ratio, to oppose the strong effect of the antibiotic, which had almost cleared the Firmicutes. This demonstrates that AI-2 levels influence the abundance of the major phyla of the gut microbiota, the balance of which is known to influence human health.


Assuntos
Homosserina/análogos & derivados , Intestinos/microbiologia , Lactonas/farmacologia , Microbiota/efeitos dos fármacos , Percepção de Quorum , Animais , Antibacterianos/farmacologia , Bacteroidetes/efeitos dos fármacos , Escherichia coli/metabolismo , Homosserina/metabolismo , Homosserina/farmacologia , Lactonas/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Microbiota/fisiologia , Staphylococcaceae/efeitos dos fármacos , Estreptomicina/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA