Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 78
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Nature ; 595(7866): 266-271, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-34163066

RESUMO

Obesity is a worldwide epidemic that predisposes individuals to many age-associated diseases, but its exact effects on organ dysfunction are largely unknown1. Hair follicles-mini-epithelial organs that grow hair-are miniaturized by ageing to cause hair loss through the depletion of hair follicle stem cells (HFSCs)2. Here we report that obesity-induced stress, such as that induced by a high-fat diet (HFD), targets HFSCs to accelerate hair thinning. Chronological gene expression analysis revealed that HFD feeding for four consecutive days in young mice directed activated HFSCs towards epidermal keratinization by generating excess reactive oxygen species, but did not reduce the pool of HFSCs. Integrative analysis using stem cell fate tracing, epigenetics and reverse genetics showed that further feeding with an HFD subsequently induced lipid droplets and NF-κB activation within HFSCs via autocrine and/or paracrine IL-1R signalling. These integrated factors converge on the marked inhibition of Sonic hedgehog (SHH) signal transduction in HFSCs, thereby further depleting lipid-laden HFSCs through their aberrant differentiation and inducing hair follicle miniaturization and eventual hair loss. Conversely, transgenic or pharmacological activation of SHH rescued HFD-induced hair loss. These data collectively demonstrate that stem cell inflammatory signals induced by obesity robustly represses organ regeneration signals to accelerate the miniaturization of mini-organs, and suggests the importance of daily prevention of organ dysfunction.


Assuntos
Alopecia/patologia , Alopecia/fisiopatologia , Folículo Piloso/patologia , Obesidade/fisiopatologia , Células-Tronco/patologia , Animais , Comunicação Autócrina , Contagem de Células , Diferenciação Celular , Linhagem da Célula , Senescência Celular , Dieta Hiperlipídica/efeitos adversos , Modelos Animais de Doenças , Proteínas Hedgehog/metabolismo , Inflamação , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Obesidade/patologia , Estresse Oxidativo , Comunicação Parácrina , Receptores de Interleucina-1/metabolismo
2.
Cell ; 141(2): 331-43, 2010 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-20403327

RESUMO

A plethora of growth factors regulate keratinocyte proliferation and differentiation that control hair morphogenesis and skin barrier formation. Wavy hair phenotypes in mice result from naturally occurring loss-of-function mutations in the genes for TGF-alpha and EGFR. Conversely, excessive activities of TGF-alpha/EGFR result in hairless phenotypes and skin cancers. Unexpectedly, we found that mice lacking the Trpv3 gene also exhibit wavy hair coat and curly whiskers. Here we show that keratinocyte TRPV3, a member of the transient receptor potential (TRP) family of Ca(2+)-permeant channels, forms a signaling complex with TGF-alpha/EGFR. Activation of EGFR leads to increased TRPV3 channel activity, which in turn stimulates TGF-alpha release. TRPV3 is also required for the formation of the skin barrier by regulating the activities of transglutaminases, a family of Ca(2+)-dependent crosslinking enzymes essential for keratinocyte cornification. Our results show that a TRP channel plays a role in regulating growth factor signaling by direct complex formation.


Assuntos
Receptores ErbB/metabolismo , Cabelo/crescimento & desenvolvimento , Transdução de Sinais , Pele/crescimento & desenvolvimento , Canais de Cátion TRPV/metabolismo , Animais , Cálcio/metabolismo , Células Cultivadas , Cabelo/metabolismo , Humanos , Queratinócitos/metabolismo , Camundongos , Camundongos Knockout , Pele/metabolismo , Canais de Cátion TRPV/genética , Fator de Crescimento Transformador alfa/metabolismo
3.
Dev Dyn ; 251(7): 1175-1195, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35048440

RESUMO

BACKGROUND: Hedgehog (HH) signaling is essential for homeostasis in gustatory fungiform papillae (FP) and taste buds. However, activities of HH antagonists in these tissues remain unexplored. We investigated a potential role for HH-interacting protein (HHIP), an endogenous pathway antagonist, in regulating HH signaling during taste organ homeostasis. We found a restricted pattern of Hhip-expressing cells in the anterior epithelium of each nongustatory filiform papilla (FILIF) only. To test for roles in antagonism of HH signaling, we investigated HHIP after pathway inhibition with SMO inhibition via sonidegib and Smo deletion, Gli2 deletion/suppression, or with chorda tympani/lingual nerve cut. RESULTS: In all approaches, the HHIP expression pattern was retained in FILIF suggesting HH-independent regulation of HHIP. Remarkably, after pathway inhibition, HHIP expression was detected also in the conical, FILIF-like atypical FP. We found a close association of de novo expression of HHIP in atypical FP with loss of Gli1+, HH-responding cells. Further, we report that PTCH1 is another potential HH antagonist in FILIF that co-localizes with HHIP. CONCLUSIONS: After HH pathway inhibition the ectopic expression of HHIP correlates with a FILIF-like morphology in atypical FP and we propose that localized expression of the HH antagonist HHIP regulates pathway inhibition to maintain FILIF during tongue homeostasis.


Assuntos
Papilas Gustativas , Expressão Ectópica do Gene , Proteínas Hedgehog/genética , Proteínas Hedgehog/metabolismo , Homeostase , Papilas Gustativas/metabolismo , Língua
4.
Mod Pathol ; 35(4): 506-514, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-34593967

RESUMO

Merkel cell carcinoma (MCC) is an aggressive cutaneous neuroendocrine carcinoma without a known dysplastic precursor. In some cases, MCC is associated with SCCIS in the overlying epidermis; however, the MCC and SCCIS populations display strikingly different morphologies, and thus far a relationship between these components has not been demonstrated. To better understand the relationship between these distinct tumor cell populations, we evaluated 7 pairs of MCC-SCCIS for overlapping genomic alterations by cancer profiling panel. A subset was further characterized by transcriptional profiling and immunohistochemistry. In 6 of 7 MCC-SCCIS pairs there was highly significant mutational overlap including shared TP53 and/or RB1 mutations. In some cases, oncogenic events previously implicated in MCC (MYCL gain, MDM4 gain, HRAS mutation) were detected in both components. Although FBXW7 mutations were enriched in MCC, no gene mutation was unique to the MCC component across all cases. Transcriptome analysis identified 2736 differentially expressed genes between MCC and SCCIS. Genes upregulated in the MCC component included Polycomb repressive complex targets; downregulated transcripts included epidermal markers, and immune genes such as HLA-A. Immunohistochemical studies revealed increased expression of SOX2 in the MCC component, with diminished H3K27Me3, Rb, and HLA-A expression. In summary, MCC-SCCIS pairs demonstrate clonal relatedness. The shift to neuroendocrine phenotype is associated with loss of Rb protein expression, decrease in global H3K27Me3, and increased expression of Merkel cell genes such as SOX2. Our findings suggest an epidermal origin of MCC in this setting, and to our knowledge provide the first molecular evidence that intraepithelial squamous dysplasia may represent a direct precursor for small cell carcinoma.


Assuntos
Carcinoma de Célula de Merkel , Carcinoma de Células Escamosas , Neoplasias Cutâneas , Carcinoma de Célula de Merkel/genética , Carcinoma de Célula de Merkel/patologia , Carcinoma de Células Escamosas/genética , Proteínas de Ciclo Celular , Genômica , Humanos , Imuno-Histoquímica , Proteínas Proto-Oncogênicas , Neoplasias Cutâneas/genética , Neoplasias Cutâneas/patologia
5.
Carcinogenesis ; 42(8): 1100-1109, 2021 08 19.
Artigo em Inglês | MEDLINE | ID: mdl-34117865

RESUMO

Uncontrolled activation of the Hedgehog (Hh) signaling pathway, operating through GLI transcription factors, plays a central role in the pathogenesis of cutaneous basal cell carcinoma and contributes to the development of several malignancies arising in extracutaneous sites. We now report that K5-tTA;tetO-Gli2 bitransgenic mice develop distinctive epithelial tumors within their jaws. These tumors consist of large masses of highly proliferative, monomorphous, basaloid cells with scattered foci of keratinization and central necrosis, mimicking human basaloid squamous cell carcinoma (BSCC), an aggressive upper aerodigestive tract tumor. Like human BSCC, these tumors express epidermal basal keratins and differentiation-specific keratins within squamous foci. Mouse BSCCs express high levels of Gli2 and Hh target genes, including Gli1 and Ptch1, which we show are also upregulated in a subset of human BSCCs. Mouse BSCCs appear to arise from distinct epithelial sites, including the gingival junctional epithelium and epithelial rests of Malassez, a proposed stem cell compartment. Although Gli2 transgene expression is restricted to epithelial cells, we also detect striking alterations in bone adjacent to BSCCs, with activated osteoblasts, osteoclasts and osteal macrophages, indicative of active bone remodeling. Gli2 transgene inactivation resulted in rapid BSCC regression and reversal of the bone remodeling phenotype. This first-reported mouse model of BSCC supports the concept that uncontrolled Hh signaling plays a central role in the pathogenesis of a subset of human BSCCs, points to Hh/GLI2 signaling as a potential therapeutic target and provides a powerful new tool for probing the mechanistic underpinnings of tumor-associated bone remodeling.


Assuntos
Remodelação Óssea , Carcinoma de Células Escamosas/patologia , Proteínas Hedgehog/metabolismo , Proteínas Nucleares/metabolismo , Neoplasias Cutâneas/patologia , Proteína Gli2 com Dedos de Zinco/metabolismo , Animais , Carcinoma de Células Escamosas/metabolismo , Humanos , Camundongos , Camundongos Transgênicos , Neoplasias Cutâneas/metabolismo
6.
Proc Natl Acad Sci U S A ; 114(48): E10369-E10378, 2017 11 28.
Artigo em Inglês | MEDLINE | ID: mdl-29133390

RESUMO

Striking taste disturbances are reported in cancer patients treated with Hedgehog (HH)-pathway inhibitor drugs, including sonidegib (LDE225), which block the HH pathway effector Smoothened (SMO). We tested the potential for molecular, cellular, and functional recovery in mice from the severe disruption of taste-organ biology and taste sensation that follows HH/SMO signaling inhibition. Sonidegib treatment led to rapid loss of taste buds (TB) in both fungiform and circumvallate papillae, including disruption of TB progenitor-cell proliferation and differentiation. Effects were selective, sparing nontaste papillae. To confirm that taste-organ effects of sonidegib treatment result from HH/SMO signaling inhibition, we studied mice with conditional global or epithelium-specific Smo deletions and observed similar effects. During sonidegib treatment, chorda tympani nerve responses to lingual chemical stimulation were maintained at 10 d but were eliminated after 16 d, associated with nearly complete TB loss. Notably, responses to tactile or cold stimulus modalities were retained. Further, innervation, which was maintained in the papilla core throughout treatment, was not sufficient to sustain TB during HH/SMO inhibition. Importantly, treatment cessation led to rapid and complete restoration of taste responses within 14 d associated with morphologic recovery in about 55% of TB. However, although taste nerve responses were sustained, TB were not restored in all fungiform papillae even with prolonged recovery for several months. This study establishes a physiologic, selective requirement for HH/SMO signaling in taste homeostasis that includes potential for sensory restoration and can explain the temporal recovery after taste dysgeusia in patients treated with HH/SMO inhibitors.


Assuntos
Antineoplásicos/efeitos adversos , Compostos de Bifenilo/efeitos adversos , Disgeusia/fisiopatologia , Piridinas/efeitos adversos , Transdução de Sinais/efeitos dos fármacos , Paladar/efeitos dos fármacos , Língua/fisiopatologia , Animais , Carcinoma Basocelular/tratamento farmacológico , Diferenciação Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Nervo da Corda do Tímpano/efeitos dos fármacos , Nervo da Corda do Tímpano/fisiopatologia , Modelos Animais de Doenças , Disgeusia/induzido quimicamente , Disgeusia/patologia , Proteínas Hedgehog/antagonistas & inibidores , Proteínas Hedgehog/metabolismo , Humanos , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Recuperação de Função Fisiológica , Neoplasias Cutâneas/tratamento farmacológico , Receptor Smoothened/antagonistas & inibidores , Receptor Smoothened/genética , Receptor Smoothened/metabolismo , Células-Tronco/efeitos dos fármacos , Paladar/fisiologia , Papilas Gustativas/citologia , Papilas Gustativas/efeitos dos fármacos , Papilas Gustativas/patologia , Papilas Gustativas/fisiopatologia , Língua/efeitos dos fármacos , Língua/inervação
7.
Gastroenterology ; 154(1): 140-153.e17, 2018 01.
Artigo em Inglês | MEDLINE | ID: mdl-28912017

RESUMO

BACKGROUND & AIMS: Chronic gastrointestinal inflammation increases the risk of cancer by mechanisms that are not well understood. Indoleamine-2,3-dioxygenase 1 (IDO1) is a heme-binding enzyme that regulates the immune response via catabolization and regulation of tryptophan availability for immune cell uptake. IDO1 expression is increased during the transition from chronic inflammation to gastric metaplasia. We investigated whether IDO1 contributes to the inflammatory response that mediates loss of parietal cells leading to metaplasia. METHODS: Chronic gastric inflammation was induced in Ido1-/- and CB57BL/6 (control) mice by gavage with Helicobacter felis or overexpression of interferon gamma in gastric parietal cells. We also performed studies in Jh-/- mice, which are devoid of B cells. Gastric tissues were collected and analyzed by flow cytometry, immunostaining, and real-time quantitative polymerase chain reaction. Plasma samples were analyzed by enzyme-linked immunosorbent assay. Gastric tissues were obtained from 20 patients with gastric metaplasia and 20 patients without gastric metaplasia (controls) and analyzed by real-time quantitative polymerase chain reaction; gastric tissue arrays were analyzed by immunohistochemistry. We collected genetic information on gastric cancers from The Cancer Genome Atlas database. RESULTS: H felis gavage induced significantly lower levels of pseudopyloric metaplasia in Ido1-/- mice, which had lower frequencies of gastric B cells, than in control mice. Blood plasma from H felis-infected control mice had increased levels of autoantibodies against parietal cells, compared to uninfected control mice, but this increase was lower in Ido1-/- mice. Chronically inflamed stomachs of Ido1-/- mice had significantly lower frequencies of natural killer cells in contact with parietal cells, compared with stomachs of control mice. Jh-/- mice had lower levels of pseudopyloric metaplasia than control mice in response to H felis infection. Human gastric pre-neoplasia and carcinoma specimens had increased levels of IDO1 messenger RNA compared with control gastric tissues, and IDO1 protein colocalized with B cells. Co-clustering of IDO1 messenger RNA with B-cell markers was corroborated by The Cancer Genome Atlas database. CONCLUSIONS: IDO1 mediates gastric metaplasia by regulating the B-cell compartment. This process appears to be associated with type II hypersensitivity/autoimmunity. The role of autoimmunity in the progression of pseudopyloric metaplasia warrants further investigation.


Assuntos
Gastrite/etiologia , Hipersensibilidade/etiologia , Indolamina-Pirrol 2,3,-Dioxigenase/metabolismo , Lesões Pré-Cancerosas/enzimologia , Neoplasias Gástricas/etiologia , Animais , Linfócitos B/fisiologia , Gastrite/enzimologia , Gastrite/patologia , Humanos , Hipersensibilidade/enzimologia , Hipersensibilidade/patologia , Metaplasia , Camundongos , Camundongos Endogâmicos C57BL , Lesões Pré-Cancerosas/patologia , Neoplasias Gástricas/enzimologia , Neoplasias Gástricas/patologia
8.
PLoS Genet ; 12(11): e1006442, 2016 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-27893742

RESUMO

For homeostasis, lingual taste papilla organs require regulation of epithelial cell survival and renewal, with sustained innervation and stromal interactions. To investigate a role for Hedgehog/GLI signaling in adult taste organs we used a panel of conditional mouse models to manipulate GLI activity within epithelial cells of the fungiform and circumvallate papillae. Hedgehog signaling suppression rapidly led to taste bud loss, papilla disruption, and decreased proliferation in domains of papilla epithelium that contribute to taste cells. Hedgehog responding cells were eliminated from the epithelium but retained in the papilla stromal core. Despite papilla disruption and loss of taste buds that are a major source of Hedgehog ligand, innervation to taste papillae was maintained, and not misdirected, even after prolonged GLI blockade. Further, vimentin-positive fibroblasts remained in the papilla core. However, retained innervation and stromal cells were not sufficient to maintain taste bud cells in the context of compromised epithelial Hedgehog signaling. Importantly taste organ disruption after GLI blockade was reversible in papillae that retained some taste bud cell remnants where reactivation of Hedgehog signaling led to regeneration of papilla epithelium and taste buds. Therefore, taste bud progenitors were either retained during epithelial GLI blockade or readily repopulated during recovery, and were poised to regenerate taste buds once Hedgehog signaling was restored, with innervation and papilla connective tissue elements in place. Our data argue that Hedgehog signaling is essential for adult tongue tissue maintenance and that taste papilla epithelial cells represent the key targets for physiologic Hedgehog-dependent regulation of taste organ homeostasis. Because disruption of GLI transcriptional activity in taste papilla epithelium is sufficient to drive taste organ loss, similar to pharmacologic Hedgehog pathway inhibition, the findings suggest that taste alterations in cancer patients using systemic Hedgehog pathway inhibitors result principally from interruption of signaling activity in taste papillae.


Assuntos
Proteínas Hedgehog/genética , Papilas Gustativas/metabolismo , Paladar/genética , Língua/metabolismo , Animais , Células Epiteliais/metabolismo , Epitélio/metabolismo , Proteínas Hedgehog/antagonistas & inibidores , Proteínas Hedgehog/metabolismo , Camundongos , Fibras Nervosas/metabolismo , Transdução de Sinais , Células Estromais/metabolismo , Papilas Gustativas/crescimento & desenvolvimento , Percepção Gustatória/genética
9.
J Biol Chem ; 291(6): 3030-42, 2016 Feb 05.
Artigo em Inglês | MEDLINE | ID: mdl-26601958

RESUMO

UBE2W ubiquitinates N termini of proteins rather than internal lysine residues, showing a preference for substrates with intrinsically disordered N termini. The in vivo functions of this intriguing E2, however, remain unknown. We generated Ube2w germ line KO mice that proved to be susceptible to early postnatal lethality without obvious developmental abnormalities. Although the basis of early death is uncertain, several organ systems manifest changes in Ube2w KO mice. Newborn Ube2w KO mice often show altered epidermal maturation with reduced expression of differentiation markers. Mirroring higher UBE2W expression levels in testis and thymus, Ube2w KO mice showed a disproportionate decrease in weight of these two organs (~50%), suggesting a functional role for UBE2W in the immune and male reproductive systems. Indeed, Ube2w KO mice displayed sustained neutrophilia accompanied by increased G-CSF signaling and testicular vacuolation associated with decreased fertility. Proteomic analysis of a vulnerable organ, presymptomatic testis, showed a preferential accumulation of disordered proteins in the absence of UBE2W, consistent with the view that UBE2W preferentially targets disordered polypeptides. These mice further allowed us to establish that UBE2W is ubiquitously expressed as a single isoform localized to the cytoplasm and that the absence of UBE2W does not alter cell viability in response to various stressors. Our results establish that UBE2W is an important, albeit not essential, protein for early postnatal survival and normal functioning of multiple organ systems.


Assuntos
Epiderme , Anormalidades da Pele , Enzimas de Conjugação de Ubiquitina , Animais , Epiderme/anormalidades , Epiderme/enzimologia , Epiderme/imunologia , Transtornos Leucocíticos/congênito , Transtornos Leucocíticos/enzimologia , Transtornos Leucocíticos/genética , Transtornos Leucocíticos/imunologia , Masculino , Camundongos , Camundongos Knockout , Anormalidades da Pele/enzimologia , Anormalidades da Pele/genética , Anormalidades da Pele/imunologia , Testículo/enzimologia , Testículo/imunologia , Timo/enzimologia , Timo/imunologia , Enzimas de Conjugação de Ubiquitina/deficiência , Enzimas de Conjugação de Ubiquitina/imunologia
10.
Nat Genet ; 40(9): 1130-5, 2008 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-19165927

RESUMO

Constitutive Hedgehog (Hh) signaling underlies several human tumors, including basal cell carcinoma (BCC) and basaloid follicular hamartoma in skin. Intriguingly, superficial BCCs arise as de novo epithelial buds resembling embryonic hair germs, collections of epidermal cells whose development is regulated by canonical Wnt/beta-catenin signaling. Similar to embryonic hair germs, human BCC buds showed increased levels of cytoplasmic and nuclear beta-catenin and expressed early hair follicle lineage markers. We also detected canonical Wnt/ beta-catenin signaling in epithelial buds and hamartomas from mice expressing an oncogene, M2SMO, leading to constitutive Hh signaling in skin. Conditional overexpression of the Wnt pathway antagonist Dkk1 in M2SMO-expressing mice potently inhibited epithelial bud and hamartoma development without affecting Hh signaling. Our findings uncover a hitherto unknown requirement for ligand-driven, canonical Wnt/ beta-catenin signaling for Hh pathway-driven tumorigenesis, identify a new pharmacological target for these neoplasms and establish the molecular basis for the well-known similarity between early superficial BCCs and embryonic hair germs.


Assuntos
Carcinoma Basocelular/genética , Proteínas Hedgehog/genética , Neoplasias Cutâneas/genética , Proteínas Wnt/metabolismo , beta Catenina/metabolismo , Animais , Linhagem da Célula , Células Epiteliais/metabolismo , Folículo Piloso/embriologia , Hamartoma/genética , Humanos , Camundongos , Proteínas Oncogênicas/genética , Transdução de Sinais
11.
Development ; 140(24): 4870-80, 2013 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-24198274

RESUMO

The formation of epithelial tubes underlies the development of diverse organs. In the skin, hair follicles resemble tube-like structures with lumens that are generated through poorly understood cellular rearrangements. Here, we show that creation of the hair follicle lumen is mediated by early outward movement of keratinocytes from within the cores of developing hair buds. These migratory keratinocytes express keratin 79 (K79) and stream out of the hair germ and into the epidermis prior to lumen formation in the embryo. Remarkably, this process is recapitulated during hair regeneration in the adult mouse, when K79(+) cells migrate out of the reactivated secondary hair germ prior to formation of a new hair canal. During homeostasis, K79(+) cells line the hair follicle infundibulum, a domain we show to be multilayered, biochemically distinct and maintained by Lrig1(+) stem cell-derived progeny. Upward movement of these cells sustains the infundibulum, while perturbation of this domain during acne progression is often accompanied by loss of K79. Our findings uncover previously unappreciated long-distance cell movements throughout the life cycle of the hair follicle, and suggest a novel mechanism by which the follicle generates its hollow core through outward cell migration.


Assuntos
Acne Vulgar/metabolismo , Folículo Piloso/embriologia , Queratinócitos/metabolismo , Queratinas/metabolismo , Regeneração , Animais , Linhagem Celular , Movimento Celular , Células HEK293 , Cabelo/embriologia , Folículo Piloso/metabolismo , Humanos , Queratinas/genética , Queratinas Específicas do Cabelo , Queratinas Tipo II , Glicoproteínas de Membrana/metabolismo , Camundongos , Camundongos Transgênicos , Morfogênese , Proteínas do Tecido Nervoso/metabolismo
12.
Mod Pathol ; 29(3): 240-8, 2016 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-26743471

RESUMO

Merkel cell carcinoma is a rare but highly aggressive cutaneous neuroendocrine carcinoma. Cytokeratin 20 (CK20) is expressed in ~95% of Merkel cell carcinomas and is useful for distinction from morphologically similar entities including metastatic small-cell lung carcinoma. Lack of CK20 expression may make diagnosis of Merkel cell carcinoma more challenging, and has unknown biological significance. Approximately 80% of CK20-positive Merkel cell carcinomas are associated with the oncogenic Merkel cell polyomavirus. Merkel cell carcinomas lacking Merkel cell polyomavirus display distinct genetic changes from Merkel cell polyomavirus-positive Merkel cell carcinoma, including RB1 inactivating mutations. Unlike CK20-positive Merkel cell carcinoma, the majority of CK20-negative Merkel cell carcinomas are Merkel cell polyomavirus-negative, suggesting CK20-negative Merkel cell carcinomas predominantly arise through virus-independent pathway(s) and may harbor additional genetic differences from conventional Merkel cell carcinoma. Hence, we analyzed 15 CK20-negative Merkel cell carcinoma tumors (10 Merkel cell polyomavirus-negative, four Merkel cell polyomavirus-positive, and one undetermined) using the Ion Ampliseq Comprehensive Cancer Panel, which assesses copy number alterations and mutations in 409 cancer-relevant genes. Twelve tumors displayed prioritized high-level chromosomal gains or losses (average 1.9 per tumor). Non-synonymous high-confidence somatic mutations were detected in 14 tumors (average 11.9 per tumor). Assessing all somatic coding mutations, an ultraviolet-signature mutational profile was present, and more prevalent in Merkel cell polyomavirus-negative tumors. Recurrent deleterious tumor suppressor mutations affected TP53 (9/15, 60%), RB1 (3/15, 20%), and BAP1 (2/15, 13%). Oncogenic activating mutations included PIK3CA (3/15, 20%), AKT1 (1/15, 7%) and EZH2 (1/15, 7%). In conclusion, CK20-negative Merkel cell carcinoma display overlapping genetic changes with CK20-positive Merkel cell carcinoma, including RB1 mutations restricted to Merkel cell polyomavirus-negative tumors. However, some CK20-negative Merkel cell carcinomas harbor mutations not previously described in Merkel cell carcinoma. Hence, CK20-negative Merkel cell carcinomas harbor diverse oncogenic drivers which may represent therapeutic targets in individual tumors.


Assuntos
Biomarcadores Tumorais/genética , Carcinoma de Célula de Merkel/genética , Mutação , Neoplasias Cutâneas/genética , Idoso , Idoso de 80 Anos ou mais , Análise Mutacional de DNA/métodos , Feminino , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Humanos , Queratina-20/genética , Masculino , Pessoa de Meia-Idade , Proteínas de Ligação a Retinoblastoma/genética , Proteína Supressora de Tumor p53/genética , Ubiquitina-Proteína Ligases/genética
13.
Nat Genet ; 39(1): 106-12, 2007 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-17128274

RESUMO

Fungiform taste papillae form a regular array on the dorsal tongue. Taste buds arise from papilla epithelium and, unusually for epithelial derivatives, synapse with neurons, release neurotransmitters and generate receptor and action potentials. Despite the importance of taste as one of our five senses, genetic analyses of taste papilla and bud development are lacking. We demonstrate that Wnt-beta-catenin signaling is activated in developing fungiform placodes and taste bud cells. A dominant stabilizing mutation of epithelial beta-catenin causes massive overproduction of enlarged fungiform papillae and taste buds. Likewise, genetic deletion of epithelial beta-catenin or inhibition of Wnt-beta-catenin signaling by ectopic dickkopf1 (Dkk1) blocks initiation of fungiform papilla morphogenesis. Ectopic papillae are innervated in the stabilizing beta-catenin mutant, whereas ectopic Dkk1 causes absence of lingual epithelial innervation. Thus, Wnt-beta-catenin signaling is critical for fungiform papilla and taste bud development. Altered regulation of this pathway may underlie evolutionary changes in taste papilla patterning.


Assuntos
Papilas Gustativas/embriologia , Proteínas Wnt/fisiologia , beta Catenina/fisiologia , Animais , Animais Recém-Nascidos , Células Cultivadas , Feminino , Peptídeos e Proteínas de Sinalização Intercelular/genética , Camundongos , Camundongos Transgênicos , Morfogênese/genética , Gravidez , Transdução de Sinais/genética , Papilas Gustativas/crescimento & desenvolvimento , beta Catenina/genética
14.
J Neurophysiol ; 113(3): 1034-40, 2015 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-25392175

RESUMO

Taste sensation on the anterior tongue requires chorda tympani nerve function and connections with continuously renewing taste receptor cells. However, it is unclear which signaling pathways regulate the receptor cells to maintain chorda tympani sensation. Hedgehog (HH) signaling controls cell proliferation and differentiation in numerous tissues and is active in taste papillae and taste buds. In contrast, uncontrolled HH signaling drives tumorigenesis, including the common skin cancer, basal cell carcinoma. Systemic HH pathway inhibitors (HPIs) lead to basal cell carcinoma regression, but these drugs cause severe taste disturbances. We tested the hypothesis that taste disruption by HPIs reflects a direct requirement for HH signaling in maintaining taste organs and gustatory sensation. In mice treated with the HPI LDE225 up to 28 days, HH-responding cells were lost in fungiform papilla epithelium, and papillae acquired a conical apex. Taste buds were either absent or severely reduced in size in more than 90% of aberrant papillae. Taste bud remnants expressed the taste cell marker keratin 8, and papillae retained expression of nerve markers, neurofilament and P2X3. Chorda tympani nerve responses to taste stimuli were markedly reduced or absent in LDE225-treated mice. Responses to touch were retained, however, whereas cold responses were retained after 16 days of treatment but lost after 28 days. These data identify a critical, modality-specific requirement for HH signaling in maintaining taste papillae, taste buds and neurophysiological taste function, supporting the proposition that taste disturbances in HPI-treated patients are an on-target response to HH pathway blockade in taste organs.


Assuntos
Antineoplásicos/farmacologia , Compostos de Bifenilo/farmacologia , Proteínas Hedgehog/metabolismo , Piridinas/farmacologia , Papilas Gustativas/efeitos dos fármacos , Paladar , Animais , Feminino , Camundongos , Transdução de Sinais , Papilas Gustativas/metabolismo , Papilas Gustativas/fisiologia , Tato
15.
Dev Biol ; 382(1): 82-97, 2013 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-23916850

RESUMO

The adult fungiform taste papilla is a complex of specialized cell types residing in the stratified squamous tongue epithelium. This unique sensory organ includes taste buds, papilla epithelium and lateral walls that extend into underlying connective tissue to surround a core of lamina propria cells. Fungiform papillae must contain long-lived, sustaining or stem cells and short-lived, maintaining or transit amplifying cells that support the papilla and specialized taste buds. Shh signaling has established roles in supporting fungiform induction, development and patterning. However, for a full understanding of how Shh transduced signals act in tongue, papilla and taste bud formation and maintenance, it is necessary to know where and when the Shh ligand and pathway components are positioned. We used immunostaining, in situ hybridization and mouse reporter strains for Shh, Ptch1, Gli1 and Gli2-expression and proliferation markers to identify cells that participate in hedgehog signaling. Whereas there is a progressive restriction in location of Shh ligand-expressing cells, from placode and apical papilla cells to taste bud cells only, a surrounding population of Ptch1 and Gli1 responding cells is maintained in signaling centers throughout papilla and taste bud development and differentiation. The Shh signaling targets are in regions of active cell proliferation. Using genetic-inducible lineage tracing for Gli1-expression, we found that Shh-responding cells contribute not only to maintenance of filiform and fungiform papillae, but also to taste buds. A requirement for normal Shh signaling in fungiform papilla, taste bud and filiform papilla maintenance was shown by Gli2 constitutive activation. We identified proliferation niches where Shh signaling is active and suggest that epithelial and mesenchymal compartments harbor potential stem and/or progenitor cell zones. In all, we report a set of hedgehog signaling centers that regulate development and maintenance of taste organs, the fungiform papilla and taste bud, and surrounding lingual cells. Shh signaling has roles in forming and maintaining fungiform papillae and taste buds, most likely via stage-specific autocrine and/or paracrine mechanisms, and by engaging epithelial/mesenchymal interactions.


Assuntos
Epitélio/embriologia , Epitélio/metabolismo , Proteínas Hedgehog/metabolismo , Transdução de Sinais , Papilas Gustativas/embriologia , Papilas Gustativas/metabolismo , Envelhecimento/metabolismo , Animais , Animais Recém-Nascidos , Compartimento Celular , Linhagem da Célula , Proliferação de Células , Microambiente Celular , Células Epiteliais/citologia , Células Epiteliais/metabolismo , Feminino , Fatores de Transcrição Kruppel-Like/metabolismo , Ligantes , Mesoderma/citologia , Mesoderma/embriologia , Mesoderma/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Receptores Patched , Receptor Patched-1 , Receptores de Superfície Celular/metabolismo , Papilas Gustativas/citologia , Papilas Gustativas/ultraestrutura , Fatores de Tempo , Proteína GLI1 em Dedos de Zinco , Proteína Gli2 com Dedos de Zinco
16.
HGG Adv ; : 100324, 2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38956874

RESUMO

Aminoacyl-tRNA synthetases (ARSs) are ubiquitously expressed, essential enzymes that complete the first step of protein translation: ligation of amino acids to cognate tRNAs. Genes encoding ARSs have been implicated in myriad dominant and recessive phenotypes, the latter often affecting multiple tissues but with frequent involvement of the central and peripheral nervous systems, liver, and lungs. Threonyl-tRNA synthetase (TARS1) encodes the enzyme that ligates threonine to tRNATHR in the cytoplasm. To date, TARS1 variants have been implicated in a recessive brittle hair phenotype. To better understand TARS1-related recessive phenotypes, we engineered three TARS1 missense variants at conserved residues and studied these variants in S. cerevisiae and C. elegans models. This revealed two loss-of-function variants, including one hypomorphic allele (R433H). We next used R433H to study the effects of partial loss of TARS1 function in a compound heterozygous mouse model (R432H/null). This model presents with phenotypes reminiscent of patients with TARS1 variants and with distinct lung and skin defects. This study expands the potential clinical heterogeneity of TARS1-related recessive disease, which should guide future clinical and genetic evaluations of patient populations.

17.
bioRxiv ; 2024 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-38585737

RESUMO

Aminoacyl-tRNA synthetases (ARSs) are ubiquitously expressed, essential enzymes that complete the first step of protein translation: ligation of amino acids to cognate tRNAs. Genes encoding ARSs have been implicated in myriad dominant and recessive phenotypes, the latter often affecting multiple tissues but with frequent involvement of the central and peripheral nervous system, liver, and lungs. Threonyl-tRNA synthetase (TARS1) encodes the enzyme that ligates threonine to tRNATHR in the cytoplasm. To date, TARS1 variants have been implicated in a recessive brittle hair phenotype. To better understand TARS1-related recessive phenotypes, we engineered three TARS1 missense mutations predicted to cause a loss-of-function effect and studied these variants in yeast and worm models. This revealed two loss-of-function mutations, including one hypomorphic allele (R433H). We next used R433H to study the effects of partial loss of TARS1 function in a compound heterozygous mouse model (R433H/null). This model presents with phenotypes reminiscent of patients with TARS1 variants and with distinct lung and skin defects. This study expands the potential clinical heterogeneity of TARS1-related recessive disease, which should guide future clinical and genetic evaluations of patient populations.

18.
Am J Pathol ; 181(6): 2114-25, 2012 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-23036899

RESUMO

Gastric adenocarcinoma is one of the leading causes of cancer mortality worldwide. It arises through a stepwise process that includes prominent inflammation with expression of interferon-γ (IFN-γ) and multiple other pro-inflammatory cytokines. We engineered mice expressing IFN-γ under the control of the stomach-specific H(+)/K(+) ATPase ß promoter to test the potential role of this cytokine in gastric tumorigenesis. Stomachs of H/K-IFN-γ transgenic mice exhibited inflammation, expansion of myofibroblasts, loss of parietal and chief cells, spasmolytic polypeptide expressing metaplasia, and dysplasia. Proliferation was elevated in undifferentiated and metaplastic epithelial cells in H/K-IFN-γ transgenic mice, and there was increased apoptosis. H/K-IFN-γ mice had elevated levels of mRNA for IFN-γ target genes and the pro-inflammatory cytokines IL-6, IL-1ß, and tumor necrosis factor-α. Intracellular mediators of IFN-γ and IL-6 signaling, pSTAT1 and pSTAT3, respectively, were detected in multiple cell types within stomach. H/K-IFN-γ mice developed dysplasia as early as 3 months of age, and 4 of 39 mice over 1 year of age developed antral polyps or tumors, including one adenoma and one adenocarcinoma, which expressed high levels of nuclear ß-catenin. Our data identified IFN-γ as a pivotal secreted factor that orchestrates complex changes in inflammatory, epithelial, and mesenchymal cell populations to drive pre-neoplastic progression in stomach; however, additional alterations appear to be required for malignant conversion.


Assuntos
Mucosa Gástrica/metabolismo , Inflamação/patologia , Interferon gama/genética , Estômago/patologia , Animais , Apoptose/genética , Atrofia , Linhagem da Célula/genética , Proliferação de Células , Progressão da Doença , Feminino , ATPase Trocadora de Hidrogênio-Potássio/genética , Proteínas Hedgehog/metabolismo , Inflamação/genética , Peptídeos e Proteínas de Sinalização Intercelular , Interferon gama/metabolismo , Masculino , Metaplasia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Tamanho do Órgão , Células Parietais Gástricas/metabolismo , Células Parietais Gástricas/patologia , Peptídeos/metabolismo , Lesões Pré-Cancerosas/patologia , Fatores de Transcrição STAT/metabolismo , Transdução de Sinais/genética , Neoplasias Gástricas/genética , Neoplasias Gástricas/patologia , Regulação para Cima/genética
19.
J Invest Dermatol ; 143(9): 1700-1707.e1, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-36914001

RESUMO

Fragmentation, disorganization, and depletion of the collagen-rich dermal extracellular matrix are hallmarks of aged human skin. These deleterious alterations are thought to critically mediate many of the prominent clinical attributes of aged skin, including thinning, fragility, impaired wound healing, and a propensity for carcinoma. Matrix metalloproteinase-1 (MMP1) initiates the cleavage of collagen fibrils and is significantly increased in dermal fibroblasts in aged human skin. To investigate the role of elevated MMP1 in skin aging, we generated a conditional bitransgenic mouse (type I collagen alpha chain 2; human MMP1 [Col1a2;hMMP1]) that expresses full-length, catalytically active hMMP1 in dermal fibroblasts. hMMP1 expression is activated by a tamoxifen-inducible Cre recombinase that is driven by the Col1a2 promoter and upstream enhancer. Tamoxifen induced hMMP1 expression and activity throughout the dermis Col1a2:hMMP1 mice. At 6 months of age, Col1a2;hMMP1 mice displayed loss and fragmentation of dermal collagen fibrils, which was accompanied by many of the features of aged human skin, such as contracted fibroblast morphology, reduced collagen production, increased expression of multiple endogenous MMPs, and proinflammatory mediators. Interestingly, Col1a2;hMMP1 mice displayed substantially increased susceptibility to skin papilloma development. These data demonstrate that fibroblast expression of hMMP1 is a critical mediator of dermal aging and creates a dermal microenvironment that promotes keratinocyte tumor development.


Assuntos
Papiloma , Envelhecimento da Pele , Humanos , Animais , Camundongos , Idoso , Metaloproteinase 1 da Matriz/genética , Metaloproteinase 1 da Matriz/metabolismo , Colágeno Tipo I/genética , Colágeno Tipo I/metabolismo , Colágeno/metabolismo , Pele/metabolismo , Envelhecimento da Pele/genética , Fibroblastos/metabolismo , Células Cultivadas , Microambiente Tumoral
20.
bioRxiv ; 2023 May 05.
Artigo em Inglês | MEDLINE | ID: mdl-37205445

RESUMO

Sebaceous glands (SGs) release oils that protect our skin, but how these glands respond to injury has not been previously examined. Here, we report that SGs are largely self-renewed by dedicated stem cell pools during homeostasis. Using targeted single cell RNA-sequencing, we uncovered both direct and indirect paths by which these resident SG progenitors ordinarily differentiate into sebocytes, including transit through a PPARγ+Krt5+ transitional cell state. Upon skin injury, however, SG progenitors depart their niche, reepithelialize the wound, and are replaced by hair follicle-derived stem cells. Furthermore, following targeted genetic ablation of >99% of SGs from dorsal skin, these glands unexpectedly regenerate within weeks. This regenerative process is mediated by alternative stem cells originating from the hair follicle bulge, is dependent upon FGFR signaling, and can be accelerated by inducing hair growth. Altogether, our studies demonstrate that stem cell plasticity promotes SG durability following injury.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA