Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Fish Shellfish Immunol ; 55: 434-43, 2016 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-27320869

RESUMO

The immune tone is defined as an immunological state during which the readiness for immune response is potentiated. The establishment of immune tone in the gut of olive flounder (Paralichthys olivaceus) was investigated by feeding Lactococcus lactis BFE920 (LL) or Lactobacillus plantarum FGL0001 (LP). LL-fed flounder showed significantly increased levels of regulatory genes (FOXP3, IL-10, and TGF-ß1), CD18, and CD83 in the gut. In contrast, LP feeding drastically increased proinflammatory genes (T-bet, IL-1ß, and IFN-γ) and CD18. This indicates that LL and LP establish different types of local immune tones in the gut through differential activation of innate immune cells: LL activates both macrophages and dendritic cells while LP activates macrophages only. Both of the immune tones required at least a total of 6 probiotic feeds during 72 h for a stable establishment. Once established, the type of immune tone remained steady even up to 30 days (a total of 60 feeds) probiotics feeding. The LL-induced regulatory immune tone enhanced the level of occludin, a tight junction molecule, significantly more than that observed with the proinflammatory immune tone established by LP feeding. Consequently, LL-fed fish showed considerably lower gut permeability than that of the LP-fed group. Furthermore, when orally challenged by Edwardsiella tarda, LL-fed flounder survived at a significantly higher rate than LP-fed fish. The data clearly demonstrate that individual probiotics establish distinct types of immune tone in the fish gut, which in turn influences the immunological status as well as the physiology of the gut. Selection of proper probiotics may be essential for optimal effects in aquaculture farming.


Assuntos
Linguados/imunologia , Imunomodulação , Lactobacillus plantarum/química , Lactococcus lactis/química , Probióticos/administração & dosagem , Ração Animal/análise , Animais , Dieta/veterinária , Trato Gastrointestinal/imunologia
2.
Fish Shellfish Immunol ; 42(1): 177-83, 2015 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-25449382

RESUMO

The effects of a dietary probiotic mixture containing Lactococcus (Lc.) lactis BFE920 isolated from bean sprout and autochthonous Lactobacillus (Lb.) plantarum FGL0001 originally isolated from the hindgut of olive flounder (Paralichthys olivaceus) were investigated for the purpose of improving the probiotic effects of Lc. lactis BFE920 on the olive flounder. The immunostimulatory, disease protective, and weight gain effects of Lc. lactis BFE920 were significantly improved when olive flounder (average weight 37.5±1.26 g) were fed the probiotic mixture (log10 7.0 CFU each/g feed pellet) for 30 days. Flounder fed the mixture showed improved skin mucus lysozyme activity and phagocytic activity of innate immune cells compared to flounder fed a single probiotic agent or a control diet. While the levels of neutrophil activity in flounder fed the single probiotic agent or the mixture were similar, they were significantly higher than levels in a control group. Additionally, probiotic-fed flounder showed significantly increased expressions of IL-6, IL-8, and TNF-α in the intestine compared to the control group. Following a 30-day period of being fed probiotics or a control diet, the olive flounder were challenged with an i.p. injection of Streptococcus iniae (log10 6.0 CFU/fish). The groups fed the mixed probiotics, Lc. lactis BFE920, Lb. plantarum FGL0001, and the control diet had survival rates of 55%, 45%, 35%, and 20%, respectively. Flounder fed the probiotic mixture gained 38.1±2.8% more body weight compared to flounder fed the control diet during the 30-day study period. These data strongly suggest that a mixture of Lc. lactis BFE920 and Lb. plantarum FGL0001 may serve as an immunostimulating feed additive useful for disease protection in the fish farming industry.


Assuntos
Adjuvantes Imunológicos/farmacologia , Resistência à Doença/efeitos dos fármacos , Linguado/imunologia , Imunidade Inata/efeitos dos fármacos , Probióticos/farmacologia , Animais , Citocinas/imunologia , Suplementos Nutricionais , Lactobacillus plantarum , Lactococcus lactis , Nitroazul de Tetrazólio , Fagocitose/imunologia , Análise de Sobrevida
3.
Mar Pollut Bull ; 57(1-5): 86-93, 2008.
Artigo em Inglês | MEDLINE | ID: mdl-18037450

RESUMO

A polychaete, Capitella sp. I has been shown to degrade organics actively in organically enriched sediment below fish farms. Our aim of the present study is to enhance the biological treatment of sediment by co-inoculation of Capitella sp. I with bacterial isolates that possess high degrading potential for organic matter. We isolated a total of 200 bacterial strains from fecal pellets, burrow lining, worm body, and sediment, and selected six of them for the degradation experiments in the sediment microcosms. With two out of the six isolates, tentatively identified as Vibrio sp. and Vibrio cyclitrophicus by 16SrDNA sequence, we found the TOC reduction rate was stimulated in sediment co-inoculated with the worms and each of the bacteria. In contrast, this was not observed in sediments inoculated only with the worms or the bacterium. These results strongly suggest that co-inoculation of Capitella sp. I with bacteria improves biodegradation.


Assuntos
Bactérias/metabolismo , Pesqueiros , Sedimentos Geológicos/química , Sedimentos Geológicos/microbiologia , Substâncias Húmicas , Poliquetos/microbiologia , Poliquetos/fisiologia , Animais , Bactérias/classificação , Bactérias/crescimento & desenvolvimento , Bactérias/isolamento & purificação , Carbono/metabolismo , Pesqueiros/métodos , Substâncias Húmicas/análise , Substâncias Húmicas/microbiologia , Poliquetos/metabolismo , Água do Mar/microbiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA