Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 34
Filtrar
1.
Environ Res ; 229: 115961, 2023 07 15.
Artigo em Inglês | MEDLINE | ID: mdl-37086885

RESUMO

This study demonstrates the synthesis of titanium oxynitride (TiOxNy) via a controlled step-annealing of commercial titanium nitride (TiN) powders under normal ambience. The structure of the formed TiOxNy system is confirmed via XRD, Rietveld refinements, XPS, Raman, and HRTEM analysis. A distinct plasmonic band corresponding to TiN is observed in the absorption spectrum of TiOxNy, indicating that the surface plasmonic resonance (SPR) property of TiN is being inherited in the resulting TiOxNy system. The prerequisites such as reduced band gap energy, suitable band edge positions, reduced recombination, and enhanced carrier-lifetime manifested by the TiOxNy system are investigated using Mott-Schottky, XPS, time-resolved and steady-state PL spectroscopy techniques. The obtained TiOxNy photocatalyst is found to degrade around 98% of 10 ppm rhodamine B dye in 120 min and produce H2 at a rate of ∼1546 µmolg-1h-1 under solar light irradiation along with consistent recycle abilities. The results of cyclic voltammetry, linear sweep voltammetry, electrochemical impedance and photocurrent studies suggest that this evolved TiOxNy system could be functioning via plasmonic Ohmic interface rather than the typical plasmonic Schottky interface due to their amalgamated band structures in the oxynitride phase.


Assuntos
Luz , Titânio , Luz Solar , Titânio/química
2.
Beilstein J Org Chem ; 18: 1203-1209, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36158176

RESUMO

Herein, we present the bottom-up, mechanochemical synthesis of phosphorus-bridged heptazine-based carbon nitrides (g-h-PCN). The structure of these materials was determined through a combination of powder X-ray diffraction (PXRD), X-ray photoelectron spectroscopy (XPS), 31P magic angle spinning nuclear magnetic resonance (MAS NMR), density functional theory (DFT) and electron energy loss spectroscopy (EELS). Compared to traditional furnace-based techniques, the presented method utilizes milder conditions, as well as shorter reaction times. Both samples of g-h-PCN directly after milling and aging and after an hour of annealing at 300 °C (g-h-PCN300) show a reduction in photoluminescent recombination, as well as a nearly two-time increase in photocurrent under broad spectrum irradiation, which are appealing properties for photocatalysis.

3.
Faraday Discuss ; 215(0): 379-392, 2019 07 04.
Artigo em Inglês | MEDLINE | ID: mdl-31144688

RESUMO

For decades, reports have suggested that photo-catalytic nitrogen fixation by titania in an aqueous environment is possible. Yet a consensus does not exist regarding how the reaction proceeds. Furthermore, the presence of an aqueous protonated solvent and the similarity between the redox potential for nitrogen and proton reduction suggest that ammonia production is unlikely. Here, we re-investigate photo-catalytic nitrogen fixation by titania in an aqueous environment through a series of photo-catalytic and electrocatalytic experiments. Photo-catalytic testing reveals that mineral phase and metal dopants play a marginal role in promoting nitrogen photofixation, with ammonia production increasing when the majority phase is rutile and with iron dopants. However, the presence of a trace amount of adsorbed carbonaceous species increased the rate of ammonia production by two times that observed without adsorbed carbon based species. This suggests that carbon species play a potential larger role in mediating the nitrogen fixation process over mineral phase and metal dopants. We also demonstrate an experimental approach aimed to detect low-level ammonia production from photo-catalysts using rotating ring disk electrode experiments conducted with and without illumination. Consistent with the photocatalysis, ammonia is only discernible at the ring with rutile phase titania, but not with mixed-phase titania. Rotating ring disk electrode experiments may also provide a new avenue to attain a higher degree of precision in detecting ammonia at low levels.


Assuntos
Carbono/química , Fixação de Nitrogênio , Titânio/química , Catálise , Técnicas Eletroquímicas , Processos Fotoquímicos , Propriedades de Superfície , Água/química
4.
Phys Chem Chem Phys ; 19(43): 29429-29437, 2017 Nov 08.
Artigo em Inglês | MEDLINE | ID: mdl-29077114

RESUMO

Nickel supported CdIn2S4 (Ni-CIS) spongy-like spheres have been developed using alcoholysis followed by a sulfidation process. The formation of nanocrystalline-single phase CdIn2S4 was confirmed using X-ray diffraction studies. Electron microscopy images showed that the spongy-like spheres are composed of CdIn2S4 nanoparticles with average sizes of around 25 nm. X-ray photoelectron spectra indicated the presence of elements with their respective stable oxidation states that led to the formation of single phase CdIn2S4 with enhanced structural integrity and chemical composition. The absorption spectra indicated the visible light activity of the material and the band gap energy is deduced to be 2.23 eV. The photocatalytic efficiency of the synthesized Ni-CIS in relation to its ability to produce hydrogen under solar light irradiation is estimated to be 1060 µmol g-1 h-1, which is around 5.5 and 3.6 fold higher than that of Pt-CIS (180 µmol g-1 h-1) and Pd-CIS (290 µmol g-1 h-1), respectively, as obtained in this study. Accordingly, the mechanism of the observed efficiency of the Ni-CIS nanoparticles is also proposed. The recyclability test showed consistent hydrogen evolution efficiency over 3 cycles (9 h), which essentially revealed the excellent photo- and chemical-stability of the photocatalyst. The strategy to utilize non-noble metals such as Ni, rather than noble-metals, as a co-catalyst opens up a new possibility to develop low cost and high-performance sunlight-driven photocatalysts as achieved in this study.

5.
Phys Chem Chem Phys ; 16(13): 5937-41, 2014 Apr 07.
Artigo em Inglês | MEDLINE | ID: mdl-24549009

RESUMO

A hollow Fe2O3-TiO2-PtOx photocatalyst for visible light H2 generation was prepared from nanosized MIL-88B consisting of coordinatively unsaturated metal centers as a hard template. This photocatalyst is composed of hybrid metal oxide-TiO2 with controllable wall thickness and two different cocatalysts that are separately located on two surface sides.

6.
Angew Chem Int Ed Engl ; 53(26): 6618-23, 2014 Jun 23.
Artigo em Inglês | MEDLINE | ID: mdl-24737715

RESUMO

An Au/TiO(2) nanostructure was constructed to obtain a highly efficient visible-light-driven photocatalyst. The design was based on a three-dimensional ordered assembly of thin-shell Au/TiO(2) hollow nanospheres (Au/TiO(2)-3 DHNSs). The designed photocatalysts exhibit not only a very high surface area but also photonic behavior and multiple light scattering, which significantly enhances visible-light absorption. Thus Au/TiO(2)-3 DHNSs exhibit a visible-light-driven photocatalytic activity that is several times higher than conventional Au/TiO(2) nanopowders.

7.
J Nanosci Nanotechnol ; 12(3): 2815-24, 2012 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-22755128

RESUMO

The present study presents the synthesis details of titanium dioxide (TiO2) nanoparticles (NPs) of different morphologies using oleic acid (OA) and oleyl amine (OM) as capping agents. Different shapes of NPs, such as nanospheres, nanorods, and nanorhombics, were achieved. In order to develop nanocomposite thin films for photovoltaic cells, these TiO2 NPs were carefully dispersed in 2-methoxy-5-(2'-ethylhexyloxy)-p-phenylene vinylene (MEH-PPV) matrix. The properties of synthesized TiO2 NPs and MEH-PPV/TiO2 nanocomposites were characterized using transmission electron microscopy (TEM), thermogravimetric analysis (TGA), UV-Visible spectroscopy, and Photoluminescence technique. Obtained results showed promising properties for photovoltaic devices, especially solar radiation absorption properties and charge transfer at the interface of the conjugated MEH-PPV matrix and TiO2 dispersed NPs.

8.
ChemSusChem ; 15(21): e202201535, 2022 Nov 08.
Artigo em Inglês | MEDLINE | ID: mdl-36121437

RESUMO

The design of functionalized metallic nanoparticles is considered an emerging technique to ensure the interaction between metal and semiconductor material. In the literature, this interface interaction is mainly governed by electrostatic or van der Waals forces, limiting the injection of electrons under light irradiation. To enhance the transfer of electrons between two compounds, close contact or chemical bonding at the interface is required. Herein, a new approach was reported for the synthesis of chemically bonded plasmonic Au NPs/ZIF-67 nanocomposites. The structure of ZIF-67 was grown on the surface of functionalized plasmonic Au NPs using 1H-1,2,4-triazole-3-thiol as the capping agent, which acted as both stabilizer of Au nanoparticles and a molecular linker for ZIF-67 formation. As a result, the synthesized material exhibited outstanding photocatalytic CO2 reduction with a methanol production rate of 2.70 mmol h-1 g-1 cat under sunlight irradiation. This work emphasizes that the diligent use of capping agents, with suitable functional groups, could facilitate the formation of intimate heterostructure for enhanced photocatalytic CO2 reduction.

9.
Chemosphere ; 303(Pt 1): 134861, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-35584713

RESUMO

The use of tetracycline hydrochloride (TCH) for veterinary, human therapy, and agriculture has risen in the past few decades, making it to become one of the most exploited antibiotics. However, TCH residue in the environment is causing issues related to the evolution of antibiotic-resistant bacteria. To address such a problem, photodegradation offers a potential solution to decompose these pollutants in wastewater and thereby mitigates negative environmental impacts. In this context, the research focuses on the use of the rare-earth metal oxide samarium orthovanadate (SmVO4) with nanorod structure, coupled with UiO-66-NH2 for the photocatalytic degradation. Their photocatalytic activity to degrade antibiotic TCH molecules is explored under simulated solar light irradiation. The integration of UiO-66-NH2 with SmVO4 enhanced the light absorption, recombination resistance, carrier lifetime (from 0.382 to 0.411 ns) and specific surface area (from 67.17 to 246 m2/g) of the composite system as confirmed from multiple analyses. The obtained results further indicated that SmVO4/UiO-66-NH2 nanocomposites could form a direct Z-scheme based heterojunction. Such mechanism of charge transfer leads to the effective degradation of TCH molecules up to 50% in 90 min under solar light, while it is degraded only 30% in the case of bare-SmVO4 nanorods. In this work, the incorporation of UiO-66-NH2 positively influences photoelectrochemical properties and improves the overall photoredox properties of SmVO4 for the degradation of complex compounds like antibiotic TCH molecules. Therefore, UiO-66-NH2 can be proposed as an effective material to sensitize the rare-earth based photocatalytic material.


Assuntos
Nanocompostos , Tetraciclina , Antibacterianos , Catálise , Humanos , Estruturas Metalorgânicas , Nanocompostos/química , Ácidos Ftálicos , Luz Solar
10.
Langmuir ; 27(24): 15261-7, 2011 Dec 20.
Artigo em Inglês | MEDLINE | ID: mdl-22053750

RESUMO

A new approach for the synthesis of uniform metal-organic framework (MOF) nanocrystals with controlled sizes and aspect ratios has been developed using simultaneously the non-ionic triblock co-polymer F127 and acetic acid as stabilizing and deprotonating agents, respectively. The alkylene oxide segments of the triblock co-polymer can coordinate with metal ions and stabilize MOF nuclei in the early stage of the formation of MOF nanocrystals. Acetic acid can control the deprotonation of carboxylic linkers during the synthesis and, thus, enables the control of the rate of nucleation, leading to the tailoring of the size and aspect ratio (length/width) of nanocrystals. Fe-MIL-88B-NH(2), as an iron-based MOF crystal, was selected as a typical example to illustrate our approach. The results reveal that this approach is used for not only the synthesis of uniform nanocrystals but also the control of the size and aspect ratio of the materials. The size and aspect ratio of nanocrystals increase with an increase in the concentration of acetic acid in the synthetic mixture. The non-ionic triblock co-polymer F127 and acetic acid can be easily removed from the Fe-MIL-88B-NH(2) nanocrystal products by washing with ethanol, and thus, their amine groups are available for practical applications. The approach is expected to synthesize various nanosized carboxylate-based MOF members, such as MIL-53, MIL-89, MIL-100, and MIL-101.

11.
Inorg Chem ; 50(4): 1309-20, 2011 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-21254784

RESUMO

Undoped and cerium doped LaCO(3)OH annular-shaped nanoarchitectures with high specific surface area have been fabricated via the thermolysis of Ce(x)La(1-x)(oleate)(3) (x = 0-20 mol %) complexes in a toluene-water system containing tert-butylamine/oleylamine. The products exhibit 400 nm-sized monodisperse annular-shaped nanoarchitectures, which are constituted of 3-5 nm-sized primary particles. A possible mechanism of the reaction of Ce(x)La(1-x)(oleate)(3) and tert-butylamine for the formation of annular-shaped Ce(x)La(1-x)CO(3)OH nanoarchitectures is proposed. The thermal conversion of Ce(x)La(1-x)CO(3)OH to Ce(x)La(1-x)(CO(3))O(2) at 600 °C, to Ce(x)La(1-x)(OH)(3) at 800 °C, final to (Ce(x)La(1-x))(2)O(3-δ) at 900 °C were employed, while the original morphology was essentially unchanged. The dopant concentration was varied from 5 to 20 of cerium ions per LaCO(3)OH nanoparticle. The X-ray diffraction (XRD) results reveal that the cerium dopant could enter easily into the LaCO(3)OH structural lattice, whereas copper could unlikely enter into their lattice because of their large ionic radius difference. The cerium oxidation state was controlled by changing doping concentration. The X-ray photoelectron spectroscopy (XPS) results reveal that only one Ce(3+) oxidation state is in the as-synthesized Ce(x)La(1-x)CO(3)OH samples with cerium concentration ranging from 5 to 20 mol %, whereas both 3+ and 4+ ones coexisted in 20 mol % Ce:LaCO(3)OH structure. Remarkable luminescence emission intensity enhancement of 1.5-9.0 times were observed for Ce(x)La(1-x)CO(3)OH samples with cerium concentration ranging from 5 to 20 mol %, after doping with an undoped LaCO(3)OH.

12.
Nanomaterials (Basel) ; 11(3)2021 Feb 25.
Artigo em Inglês | MEDLINE | ID: mdl-33668837

RESUMO

The raising occurrence of antibiotics in the global water bodies has received the emerging concern due to their potential threats of generating the antibiotic-resistive and genotoxic effects into humans and aquatic species. In this direction, the solar energy assisted photocatalytic technique offers a promising solution to address such emerging concern and paves ways for the complete degradation of antibiotics with the generation of less or non-toxic by-products. Particularly, the designing of hybrid photocatalyticcomposite materials has been found to show higher antibiotics degradation efficiencies. As the hybrid photocatalysts are found as the systems with ideal characteristic properties such as superior structural, surface and interfacial properties, they offer enhanced photoabsorbance, charge-separation, -transfer, redox properties, photostability and easy recovery. In this context, this review study presents an overview on the recent developments in the designing of various hybrid photocatalytic systems and their efficiency towards the degradation of various emerging antibiotic pharmaceutical contaminants in water environments.

13.
ChemSusChem ; 13(16): 3967-3991, 2020 Aug 21.
Artigo em Inglês | MEDLINE | ID: mdl-32476290

RESUMO

Plasmonic photocatalysis is among the most efficient processes for the photoreduction of CO2 into valuable fuels. The formation of localized surface plasmon resonance (LSPR), energy transfer, and surface reaction are the significant steps in this process. LSPR plays an essential role in the performance of plasmonic photocatalysts as it promotes an excellent, light absorption over a broad wavelength range while simultaneously facilitating an efficient energy transfer to semiconductors. The LSPR transfers energy to a semiconductor through various mechanisms, which have both advantages and disadvantages. This work points out four critical features for plasmonic photocatalyst design, that is, plasmonic materials, size, shape of plasmonic nanoparticles (PNPs), and the contact between PNPs and semiconductor. Various developed plasmonic photocatalysts, as well as their photocatalytic performance in CO2 photoreduction, are reviewed and discussed. Finally, perspectives of advanced architectures and structural engineering for plasmonic photocatalyst design are put forward with high expectations to achieve an efficient CO2 photoreduction shortly.

14.
ACS Sustain Chem Eng ; 8(32): 12321-12330, 2020 Aug 17.
Artigo em Inglês | MEDLINE | ID: mdl-32832280

RESUMO

Photoelectrochemical (PEC) nitrogen fixation has opened up new possibilities for the production of ammonia from water and air under mild conditions, but this process is confronted by the inherent challenges associated with theoretical and experimental works, limiting the efficiency of the nitrogen reduction reaction. Herein, we report for the first time a novel and efficient photoelectrocatalytic system, which has been prepared by assembling plasmonic Au nanoparticles with Fe-doped W18O49 nanorods (denoted as WOF-Au). (i) The introduction of exotic Fe atoms into nonstoichiometric W18O49 can eliminate bulk defects of the W18O49 host, which resulted in narrowing bandgap energy and facilitating electron-hole separation and transportation. (ii) Meanwhile, Au nanoparticles combined with a semiconductor induce the localized surface plasmon resonance and generate energetic (hot) electrons, increasing electron density on W18O49 nanorods. Consequently, this plasmonic WOF-Au system shows an NH3 production yield of 9.82 µg h-1 cm-2 at -0.65 V versus Ag/AgCl, which is ∼2.5-folds higher than that of the WOF (without Au loading), as well as very high stability, and no NH3 formation was found for the bare W18O49 (WO). This high activity can be associated with the synergistic effects between the Fe dopant and plasmonic Au NPs on the host semiconductor W18O49. This work can bring some insights into the target-directed design of efficient plasmonic hybrid systems for N2 fixation and artificial photocatalysis.

15.
ChemSusChem ; 12(1): 291-302, 2019 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-30414247

RESUMO

A highly condensed lamellar melamine-cyanuric acid supramolecular (MCS) complex was synthesized in an autoclave at high pressure as a precursor for preparing g-C3 N4 nanosheets. Given the distinctive properties of the prepared MCS complex, an efficient g-C3 N4 nanosheet photocatalyst can be obtained by heat treatment of this MCS complex under Ar followed by calcination in air at 400 °C. The resulting nanosheets with in-plane nanoholes showed an extremely high specific surface area (≈270 m2 g-1 ) and significantly enhanced light absorption in the visible region. This phenomenon is observed for the first time in carbon nitride nanosheets. The enhanced light absorption results from the sizeable conjugated system of tri-striazine units in the carbon nitride framework, coupled with the structural defects arising from the presence of oxygen-containing groups induced during the synthesis. Consequently, the obtained carbon nitride nanosheets exhibited excellent performance for hydrogen generation under sunlight and especially under visible light. Its quantum efficiency (QE) of 20.9 % at 420 nm is one of the highest reported values for carbon nitride materials. A QE of 3.5 % could be observed even at 590 nm. The integrated QE of this material in the visible region (420-600 nm) is approximately 1 %. To the best of our knowledge this is the highest value compared to all other the carbon nitride nanosheet materials reported previously.

16.
ChemSusChem ; 11(5): 809-820, 2018 03 09.
Artigo em Inglês | MEDLINE | ID: mdl-29316318

RESUMO

The photoassisted catalytic reaction, conventionally known as photocatalysis, is expanding into the field of energy and environmental applications. It is widely known that the discovery of TiO2 -assisted photochemical reactions has led to several unique applications, such as degradation of pollutants in water and air, hydrogen production through water splitting, fuel conversion, cancer treatment, antibacterial activity, self-cleaning glasses, and concrete. These multifaceted applications of this phenomenon can be enriched and expanded further if this process is equipped with more tools and functions. The term "photoassisted" catalytic reactions clearly emphasizes that photons are required to activate the catalyst; this can be transcended even into the dark if electrons are stored in the material for the later use to continue the catalytic reactions in the absence of light. This can be achieved by equipping the photocatalyst with an electron-storage material to overcome current limitations in photoassisted catalytic reactions. In this context, this article sheds lights on the materials and mechanisms of photocatalytic reactions under light and dark conditions. The manifestation of such systems could be an unparalleled technology in the near future that could influence all spheres of the catalytic sciences.


Assuntos
Elétrons , Processos Fotoquímicos , Catálise , Escuridão , Luz , Fótons
18.
J Colloid Interface Sci ; 485: 144-151, 2017 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-27662026

RESUMO

We report a new route for the direct synthesis of γ-alumina nanocrystals with size and shape control in the presence of oleylamine as the capping agent. Their morphology can be controlled from nanospheres to nanorods by simply tuning a proper amount of concentrated nitric acid (67%) in the synthetic mixture. The as-made nanoparticle products after calcination show γ-alumina nano-size with unique porosity and high specific surface area and retained morphology. The XRD patterns of these calcined samples exhibit broad diffraction lines which are characteristic of nanocrystal size of γ-alumina. This synthesis procedure has been extended to the one-pot synthesis of nano-alumina based Ag catalysts with spherical and rod-shaped nano-alumina morphologies. Selective catalytic reduction (SCR) of NO with C3H6 over these catalysts was investigated. The results were compared to those of the conventional Ag/γ-Al2O3 and γ-nanoalumina alone. These nano-alumina based Ag catalysts exhibit excellent NO reduction activity in the presence of C3H6. Even in the presence of large oxygen concentration (15%), N2 yields as high as ∼90% at quite low temperature (∼350°C) have been achieved. The significantly high catalytic activity of this new type of nanocatalysts can also be attributed to their high surface area and good dispersion of silver species in the alumina matrix as well as the synergism and new properties that arise at the silver-nanoalumina interface.

19.
Chem Commun (Camb) ; 51(4): 624-35, 2015 Jan 14.
Artigo em Inglês | MEDLINE | ID: mdl-25302344

RESUMO

The evolution of nanotechnology has inspired materials scientists to invent nanostructures with achievements in numerous practical applications, particularly in catalysis. The great advancements typically involve flexible control over the unique properties of the nanomaterial through tuning their structural geometries and components. In this Feature Article, we present the recent progress of our recent research and that of other groups in tailoring the assembly, interfaces, and porosity of diverse inorganic nanostructures. The enhanced catalytic properties of the engineered nanostructures are discussed in relation to photocatalysis, with special emphasis on solar energy conversion, including water splitting, CO2 reduction, and organic photodecomposition. Considering their attributes of superior catalytic performance and long-term durability, the development of economical, active nanocatalysts opens up practical opportunities for endeavours in sustainable energy conversion and other applied fields. This review is expected to introduce readers to the general principles of engineering the nanostructured features of the inorganic nanomaterials capable of improving solar photocatalytic efficiency.

20.
Nanoscale ; 7(18): 8187-208, 2015 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-25804291

RESUMO

Hydrogen production via photocatalytic water splitting using sunlight has enormous potential in solving the worldwide energy and environmental crisis. The key challenge in this process is to develop efficient photocatalysts which must satisfy several criteria such as high chemical and photochemical stability, effective charge separation and strong sunlight absorption. The combination of different semiconductors to create composite materials offers a promising way to achieve efficient photocatalysts because doing so can improve the charge separation, light absorption and stability of the photocatalysts. In this review article, we summarized the most recent studies on semiconductor composites for hydrogen production under visible light irradiation. After a general introduction about the photocatalysis phenomenon, typical heterojunctions of widely studied heterogeneous semiconductors, including titanium dioxide, cadmium sulfide and graphitic carbon nitride are discussed in detail.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA