Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
1.
J Cell Sci ; 124(Pt 8): 1301-7, 2011 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-21444755

RESUMO

Tail-anchored (TA) proteins are post-translationally targeted to and inserted into the endoplasmic reticulum (ER) membrane through their single C-terminal transmembrane domain. Membrane insertion of TA proteins in mammalian cells is mediated by the ATPase TRC40/Asna1 (Get3 in yeast) and a receptor in the ER membrane. We have identified tryptophan-rich basic protein (WRB), also known as congenital heart disease protein 5 (CHD5), as the ER membrane receptor for TRC40/Asna1. WRB shows sequence similarity to Get1, a subunit of the membrane receptor complex for yeast Get3. Using biochemical and cell imaging approaches, we demonstrate that WRB is an ER-resident membrane protein that interacts with TRC40/Asna1 and recruits it to the ER membrane. We identify the coiled-coil domain of WRB as the binding site for TRC40/Asna1 and show that a soluble form of the coiled-coil domain interferes with TRC40/Asna1-mediated membrane insertion of TA proteins. The identification of WRB as a component of the TRC (Get) pathway for membrane insertion of TA proteins raises new questions concerning the proposed roles of WRB (CHD5) in congenital heart disease, and heart and eye development.


Assuntos
ATPases Transportadoras de Arsenito/metabolismo , Retículo Endoplasmático/metabolismo , Proteínas Nucleares/metabolismo , ATPases Transportadoras de Arsenito/química , ATPases Transportadoras de Arsenito/genética , Retículo Endoplasmático/química , Retículo Endoplasmático/genética , Humanos , Proteínas Nucleares/química , Proteínas Nucleares/genética , Ligação Proteica , Estrutura Terciária de Proteína , Transporte Proteico
2.
J Immunol ; 186(6): 3594-605, 2011 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-21296983

RESUMO

EBV, the prototypic human γ(1)-herpesvirus, persists for life in infected individuals, despite the presence of vigorous antiviral immunity. CTLs play an important role in the protection against viral infections, which they detect through recognition of virus-encoded peptides presented in the context of HLA class I molecules at the cell surface. The viral peptides are generated in the cytosol and are transported into the endoplasmic reticulum (ER) by TAP. The EBV-encoded lytic-phase protein BNLF2a acts as a powerful inhibitor of TAP. Consequently, loading of antigenic peptides onto HLA class I molecules is hampered, and recognition of BNLF2a-expressing cells by cytotoxic T cells is avoided. In this study, we characterize BNLF2a as a tail-anchored (TA) protein and elucidate its mode of action. Its hydrophilic N-terminal domain is located in the cytosol, whereas its hydrophobic C-terminal domain is inserted into membranes posttranslationally. TAP has no role in membrane insertion of BNLF2a. Instead, Asna1 (also named TRC40), a cellular protein involved in posttranslational membrane insertion of TA proteins, is responsible for integration of BNLF2a into the ER membrane. Asna1 is thereby required for efficient BNLF2a-mediated HLA class I downregulation. To optimally accomplish immune evasion, BNLF2a is composed of two specialized domains: its C-terminal tail anchor ensures membrane integration and ER retention, whereas its cytosolic N terminus accomplishes inhibition of TAP function. These results illustrate how EBV exploits a cellular pathway for TA protein biogenesis to achieve immune evasion, and they highlight the exquisite adaptation of this virus to its host.


Assuntos
Transportadores de Cassetes de Ligação de ATP/antagonistas & inibidores , Regulação para Baixo/imunologia , Infecções por Vírus Epstein-Barr/imunologia , Infecções por Vírus Epstein-Barr/metabolismo , Herpesvirus Humano 4/imunologia , Proteínas da Matriz Viral/fisiologia , Integração Viral/imunologia , Membro 2 da Subfamília B de Transportadores de Cassetes de Ligação de ATP , Transportadores de Cassetes de Ligação de ATP/química , Transportadores de Cassetes de Ligação de ATP/fisiologia , Sequência de Aminoácidos , ATPases Transportadoras de Arsenito/fisiologia , Linhagem Celular Transformada , Linhagem Celular Tumoral , Retículo Endoplasmático/imunologia , Retículo Endoplasmático/metabolismo , Infecções por Vírus Epstein-Barr/virologia , Células HEK293 , Células HeLa , Humanos , Dados de Sequência Molecular , Estrutura Terciária de Proteína/fisiologia , Proteínas da Matriz Viral/química
3.
J Cell Sci ; 123(Pt 9): 1522-30, 2010 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-20375064

RESUMO

Tail-anchored (TA) proteins insert post-translationally into the membrane of the endoplasmic reticulum (ER) and span the membrane by their C-terminal transmembrane domain. We have reconstituted membrane insertion of TA proteins from recombinant Asna1/TA protein complexes and ER-derived membranes. Our data show that Asna1 can mediate membrane insertion of RAMP4 and Sec61beta without the participation of other cytosolic proteins by a mechanism that depends on the presence of ATP or ADP and a protease-sensitive receptor in the ER membrane. By contrast, membrane insertion of cytochrome b5 can proceed independently of Asna1 and nucleotides.


Assuntos
ATPases Transportadoras de Arsenito/metabolismo , Membranas Intracelulares/metabolismo , Proteínas de Membrana/metabolismo , Animais , ATPases Transportadoras de Arsenito/isolamento & purificação , Cromatografia em Gel , Citocromos b5/metabolismo , Humanos , Microssomos/metabolismo , Peso Molecular , Nucleotídeos/metabolismo , Coelhos , Proteínas Recombinantes de Fusão/metabolismo , Canais de Translocação SEC , Solubilidade
4.
Proc Natl Acad Sci U S A ; 106(50): 21131-6, 2009 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-19948960

RESUMO

Tail-anchored (TA) membrane proteins are involved in a variety of important cellular functions, including membrane fusion, protein translocation, and apoptosis. The ATPase Get3 (Asna1, TRC40) was identified recently as the endoplasmic reticulum targeting factor of TA proteins. Get3 consists of an ATPase and alpha-helical subdomain enriched in methionine and glycine residues. We present structural and biochemical analyses of Get3 alone as well as in complex with a TA protein, ribosome-associated membrane protein 4 (Ramp4). The ATPase domains form an extensive dimer interface that encloses 2 nucleotides in a head-to-head orientation and a zinc ion. Amide proton exchange mass spectrometry shows that the alpha-helical subdomain of Get3 displays considerable flexibility in solution and maps the TA protein-binding site to the alpha-helical subdomain. The non-hydrolyzable ATP analogue AMPPNP-Mg(2+)- and ADP-Mg(2+)-bound crystal structures representing the pre- and posthydrolysis states are both in a closed form. In the absence of a TA protein cargo, ATP hydrolysis does not seem to be possible. Comparison with the ADP.AlF(4)(-)-bound structure representing the transition state (Mateja A, et al. (2009) Nature 461:361-366) indicates how the presence of a TA protein is communicated to the ATP-binding site. In vitro membrane insertion studies show that recombinant Get3 inserts Ramp4 in a nucleotide- and receptor-dependent manner. Although ATP hydrolysis is not required for Ramp4 insertion per se, it seems to be required for efficient insertion. We postulate that ATP hydrolysis is needed to release Get3 from its receptor. Taken together, our results provide mechanistic insights into posttranslational targeting of TA membrane proteins by Get3.


Assuntos
Adenosina Trifosfatases/química , Proteínas de Bactérias/química , Membrana Celular/metabolismo , Proteínas de Membrana/química , Trifosfato de Adenosina/metabolismo , Clostridium thermocellum/química , Ligação Proteica , Transporte Proteico
5.
Biochem J ; 427(3): 523-34, 2010 Apr 14.
Artigo em Inglês | MEDLINE | ID: mdl-20196774

RESUMO

SPP (signal peptide peptidase) is an aspartyl intramembrane cleaving protease, which processes a subset of signal peptides, and is linked to the quality control of ER (endoplasmic reticulum) membrane proteins. We analysed SPP interactions with signal peptides and other membrane proteins by co-immunoprecipitation assays. We found that SPP interacts specifically and tightly with a large range of newly synthesized membrane proteins, including signal peptides, preproteins and misfolded membrane proteins, but not with all co-expressed type II membrane proteins. Signal peptides are trapped by the catalytically inactive SPP mutant SPPD/A. Preproteins and misfolded membrane proteins interact with both SPP and the SPPD/A mutant, and are not substrates for SPP-mediated intramembrane proteolysis. Proteins interacting with SPP are found in distinct complexes of different sizes. A signal peptide is mainly trapped in a 200 kDa SPP complex, whereas a preprotein is predominantly found in a 600 kDa SPP complex. A misfolded membrane protein is detected in 200, 400 and 600 kDa SPP complexes. We conclude that SPP not only processes signal peptides, but also collects preproteins and misfolded membrane proteins that are destined for disposal.


Assuntos
Ácido Aspártico Endopeptidases/metabolismo , Proteínas de Membrana/metabolismo , Ácido Aspártico Endopeptidases/genética , Western Blotting , Linhagem Celular , Eletroforese em Gel de Poliacrilamida , Humanos , Imunoprecipitação , Proteínas de Membrana/genética , Modelos Biológicos , Opsinas/genética , Opsinas/metabolismo , Ligação Proteica , Espectrometria de Massas em Tandem
6.
BMC Cell Biol ; 10: 11, 2009 Feb 18.
Artigo em Inglês | MEDLINE | ID: mdl-19226464

RESUMO

BACKGROUND: Protein translocation across the membrane of the Endoplasmic Reticulum (ER) is the first step in the biogenesis of secretory and membrane proteins. Proteins enter the ER by the Sec61 translocon, a proteinaceous channel composed of three subunits, alpha, beta and gamma. While it is known that Sec61alpha forms the actual channel, the function of the other two subunits remains to be characterized. RESULTS: In the present study we have investigated the function of Sec61beta in Drosophila melanogaster. We describe its role in the plasma membrane traffic of Gurken, the ligand for the Epidermal Growth Factor (EGF) receptor in the oocyte. Germline clones of the mutant allele of Sec61beta show normal translocation of Gurken into the ER and transport to the Golgi complex, but further traffic to the plasma membrane is impeded. The defect in plasma membrane traffic due to absence of Sec61beta is specific for Gurken and is not due to a general trafficking defect. CONCLUSION: Based on our study we conclude that Sec61beta, which is part of the ER protein translocation channel affects a post-ER step during Gurken trafficking to the plasma membrane. We propose an additional role of Sec61beta beyond protein translocation into the ER.


Assuntos
Proteínas de Drosophila/metabolismo , Proteínas de Membrana/metabolismo , Fator de Crescimento Transformador alfa/metabolismo , Alelos , Animais , Animais Geneticamente Modificados , Sequência de Bases , Transporte Biológico Ativo , Membrana Celular/metabolismo , Proteínas de Drosophila/química , Proteínas de Drosophila/genética , Drosophila melanogaster/genética , Drosophila melanogaster/metabolismo , Retículo Endoplasmático/metabolismo , Feminino , Genes de Insetos , Células HeLa , Homozigoto , Humanos , Proteínas de Membrana/química , Proteínas de Membrana/genética , Mutação , Oócitos/metabolismo , Oócitos/ultraestrutura , Oogênese , Subunidades Proteicas , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , RNA Interferente Pequeno/genética , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Canais de Translocação SEC , Transdução de Sinais , Fator de Crescimento Transformador alfa/genética
7.
FEBS Lett ; 584(8): 1509-14, 2010 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-20206626

RESUMO

Tail-anchored proteins play important roles in protein translocation, membrane fusion and apoptosis. They are targeted to the endoplasmic reticulum membrane via the guided-entry of tail-anchored proteins (Get) pathway. We present the 2A crystal structure of Get4 which participates in early steps of the Get pathway. The structure shows an alpha-solenoid fold with particular deviations from the regular pairwise arrangement of alpha-helices. A conserved hydrophobic groove accommodates the flexible C-terminal region in trans. The structural organization of the Get4 helical hairpin motifs provides a scaffold for protein-protein interactions in the Get pathway.


Assuntos
Chaetomium/metabolismo , Proteínas Fúngicas/química , Proteínas Fúngicas/metabolismo , Biossíntese de Proteínas , Dobramento de Proteína , Adaptação Fisiológica , Sequência de Aminoácidos , Sítios de Ligação , Sequência Conservada , Proteínas Fúngicas/biossíntese , Humanos , Modelos Moleculares , Dados de Sequência Molecular , Ligação Proteica , Conformação Proteica
8.
Eur J Cell Biol ; 89(6): 449-61, 2010 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-20189678

RESUMO

N-terminal signal sequences mediate nascent protein targeting to and protein insertion into the membrane of the endoplasmic reticulum. They are typically 15-30 amino acid residues long with a core hydrophobic region flanked by an N-terminal (n-) and a C-terminal region. Following cleavage by signal peptidase, some of the resulting signal peptides are further processed by signal peptide peptidase (SPP) and fragments are liberated into the cytosol. Such fragments can have independent, post-targeting functions affecting diverse cellular processes. We show that Drosophila melanogaster Crumbs, a transmembrane protein controlling cell polarity and morphogenesis, is synthesized with an 83 residues-long signal sequence. To our knowledge, this is currently the longest signal sequence described for an eukaryotic protein. The unusual length is caused by an extended n-region, but the extension does neither affect protein targeting nor signal sequence cleavage. The signal sequence is cleaved off and the resulting signal peptide, SP(Crb), is proteolytically processed by SPP, thus representing the first substrate described for the Drosophila enzyme. We further show that signal peptide fragments can be degraded by the proteasome. Expression of transgenes encoding tagged variants of Crumbs in Drosophila embryos suggests that the signal peptide is short-lived in vivo. Our findings support a model suggesting that besides generating fragments with post-targeting functions, SPP-mediated processing is the first step in the degradation of signal peptides.


Assuntos
Ácido Aspártico Endopeptidases/metabolismo , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/metabolismo , Proteínas de Membrana/metabolismo , Sinais Direcionadores de Proteínas/genética , Sequência de Aminoácidos , Animais , Western Blotting , Proteínas de Drosophila/química , Proteínas de Drosophila/genética , Drosophila melanogaster/química , Drosophila melanogaster/genética , Imuno-Histoquímica , Imunoprecipitação , Proteínas de Membrana/química , Proteínas de Membrana/genética , Dados de Sequência Molecular , Transfecção
9.
J Cell Sci ; 121(11): 1832-40, 2008 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-18477612

RESUMO

Tail-anchored (TA) proteins are characterised by a C-terminal transmembrane region that mediates post-translational insertion into the membrane of the endoplasmic reticulum (ER). We have investigated the requirements for membrane insertion of three TA proteins, RAMP4, Sec61beta and cytocrome b5. We show here that newly synthesised RAMP4 and Sec61beta can accumulate in a cytosolic, soluble complex with the ATPase Asna1 before insertion into ER-derived membranes. Membrane insertion of these TA proteins is stimulated by ATP, sensitive to redox conditions and blocked by alkylation of SH groups by N-ethylmaleimide (NEM). By contrast, membrane insertion of cytochrome b5 is not found to be mediated by Asna1, not stimulated by ATP and not affected by NEM or an oxidative environment. The Asna1-mediated pathway of membrane insertion of RAMP4 and Sec61beta may relate to functions of these proteins in the ER stress response.


Assuntos
ATPases Transportadoras de Arsenito/metabolismo , Citocromos b5/metabolismo , Retículo Endoplasmático/metabolismo , Membranas Intracelulares/metabolismo , Proteínas de Membrana/metabolismo , Trifosfato de Adenosina/metabolismo , Alquilação , Animais , Citocromos b5/química , Cobaias , Humanos , Proteínas de Membrana/química , Oxirredução , Estresse Oxidativo/fisiologia , Estrutura Terciária de Proteína/fisiologia , Coelhos , Canais de Translocação SEC , Transdução de Sinais/fisiologia , Frações Subcelulares
10.
J Biol Chem ; 283(15): 9966-76, 2008 Apr 11.
Artigo em Inglês | MEDLINE | ID: mdl-18270201

RESUMO

N-terminal signal sequences mediate endoplasmic reticulum (ER) targeting and insertion of nascent secretory and membrane proteins and are, in most cases, cleaved off by signal peptidase. The mouse mammary tumor virus envelope protein and its alternative splice variant Rem have an unusually long signal sequence, which contains a nuclear localization signal. Although the envelope protein is targeted to the ER, inserted, and glycosylated, Rem has been described as a nuclear protein. Rem as well as a truncated version identical to the cleaved signal sequence have been shown to function as nuclear export factors for intron-containing transcripts. Using transiently transfected cells, we found that Rem is targeted to the ER, where the C-terminal portion is translocated and glycosylated. The signal sequence is cleaved off and accumulates in nucleoli. In a cell-free in vitro system, the generation of the Rem signal peptide depends on the presence of microsomal membranes. In vitro and in cells, the signal peptide initially accumulates in the membrane and is subsequently released into the cytosol. This release does not depend on processing by signal peptide peptidase, an intramembrane cleaving protease that can mediate the liberation of signal peptide fragments from the ER membrane. Our study suggests a novel pathway by which a signal peptide can be released from the ER membrane to fulfill a post-targeting function in a different compartment.


Assuntos
Retículo Endoplasmático/metabolismo , Membranas Intracelulares/metabolismo , Vírus do Tumor Mamário do Camundongo/metabolismo , Sinais de Localização Nuclear/metabolismo , Proteínas do Envelope Viral/metabolismo , Transporte Ativo do Núcleo Celular/fisiologia , Animais , Células COS , Chlorocebus aethiops , Citoplasma/genética , Citoplasma/metabolismo , Retículo Endoplasmático/genética , Glicosilação , Células HeLa , Humanos , Vírus do Tumor Mamário do Camundongo/genética , Camundongos , Microssomos/metabolismo , Sinais de Localização Nuclear/genética , Modificação Traducional de Proteínas/fisiologia , Estrutura Terciária de Proteína/fisiologia , Proteínas do Envelope Viral/genética
11.
J Virol ; 81(22): 12515-24, 2007 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-17804515

RESUMO

Insertion of the lymphocytic choriomeningitis virus (LCMV) precursor glycoprotein C (GP-C) into the membrane of the endoplasmic reticulum is mediated by an unusual signal peptide (SP(GP-C)). It is comprised of 58 amino acid residues and contains an extended hydrophilic N-terminal region, two hydrophobic regions, and a short C-terminal region. After cleavage by signal peptidase, SP(GP-C) accumulates in cells and virus particles. In the present study, we identified the LCMV SP(GP-C) as being an essential component of the GP complex and show that the different regions of SP(GP-C) are required for distinct steps in GP maturation and virus infectivity. More specifically, we show that one hydrophobic region of SP(GP-C) is sufficient for the membrane insertion of GP-C, while both hydrophobic regions are required for the processing and cell surface expression of the GPs. The N-terminal region of SP(GP-C), on the other hand, is essential for pseudoviral infection of target cells. Furthermore, we show that unmyristoylated SP(GP-C) exposes its N-terminal region to the exoplasmic side. This SP(GP-C) can promote GP-C maturation but is defective in pseudoviral infection. Myristoylation and topology of SP(GP-C) in the membrane may thus hold the key to an understanding of the role of SP(GP-C) in GP-C complex maturation and LCMV infectivity.


Assuntos
Membrana Celular/virologia , Glicoproteínas/metabolismo , Vírus da Coriomeningite Linfocítica/fisiologia , Sinais Direcionadores de Proteínas , Proteínas do Envelope Viral/metabolismo , Internalização do Vírus , Sequência de Aminoácidos , Linhagem Celular , Membrana Celular/química , Membrana Celular/metabolismo , Glicoproteínas/genética , Humanos , Vírus da Coriomeningite Linfocítica/genética , Dados de Sequência Molecular , Ácido Mirístico/metabolismo , Sinais Direcionadores de Proteínas/genética , Proteínas do Envelope Viral/genética
12.
Arthritis Res Ther ; 8(2): R39, 2006.
Artigo em Inglês | MEDLINE | ID: mdl-16469117

RESUMO

The 54 kDa subunit of the signal recognition particle (SRP54) binds to the signal sequences of nascent secretory and membrane proteins and it contributes to the targeting of these precursors to the membrane of the endoplasmic reticulum (ER). At the ER membrane, the binding of the signal recognition particle (SRP) to its receptor triggers the release of SRP54 from its bound signal sequence and the nascent polypeptide is transferred to the Sec61 translocon for insertion into, or translocation across, the ER membrane. In the current article, we have characterized the specificity of anti-SRP54 autoantibodies, which are highly characteristic of polymyositis patients, and investigated the effect of these autoantibodies on the SRP function in vitro. We found that the anti-SRP54 autoantibodies had a pronounced and specific inhibitory effect upon the translocation of the secretory protein preprolactin when analysed using a cell-free system. Our mapping studies showed that the anti-SRP54 autoantibodies bind to the amino-terminal SRP54 N-domain and to the central SRP54 G-domain, but do not bind to the carboxy-terminal M-domain that is known to bind ER signal sequences. Nevertheless, anti-SRP54 autoantibodies interfere with signal-sequence binding to SRP54, most probably by steric hindrance. When the effect of anti-SRP autoantibodies on protein targeting the ER membrane was further investigated, we found that the autoantibodies prevent the SRP receptor-mediated release of ER signal sequences from the SRP54 subunit. This observation supports a model where the binding of the homologous GTPase domains of SRP54 and the alpha-subunit of the SRP receptor to each other regulates the release of ER signal sequences from the SRP54 M-domain.


Assuntos
Autoanticorpos/imunologia , Polimiosite/imunologia , Partícula de Reconhecimento de Sinal/imunologia , Especificidade de Anticorpos , Transporte Biológico , Sistema Livre de Células , Retículo Endoplasmático/metabolismo , Humanos , Técnicas In Vitro , Prolactina/metabolismo , Precursores de Proteínas/metabolismo , Sinais Direcionadores de Proteínas , Estrutura Terciária de Proteína , Receptores Citoplasmáticos e Nucleares/antagonistas & inibidores , Receptores Citoplasmáticos e Nucleares/metabolismo , Receptores de Peptídeos/antagonistas & inibidores , Receptores de Peptídeos/metabolismo , Partícula de Reconhecimento de Sinal/genética
13.
J Biol Chem ; 278(43): 41914-20, 2003 Oct 24.
Artigo em Inglês | MEDLINE | ID: mdl-12917426

RESUMO

Signal peptides (SPs) direct nascent secretory and membrane proteins to the membrane of the endoplasmic reticulum. They are usually cleaved from the nascent polypeptide by signal peptidase and then further proteolytically processed. The SP of the pre-glycoprotein (pGP-C) of the lymphocytic choriomeningitis virus SPGP-C (signal peptide of pGP-C) shows different properties: 1) The SPGP-C is unusually long (58 amino acid residues) and contains two hydrophobic segments interrupted by a lysine residue. 2) The SPGP-C is cleaved only from a subset of pGP-C proteins. A substantial portion of pGP-C accumulates that still contains the SPGP-C.3)The cleaved SPGP-C is rather long-lived (t(1/2) of more than 6 h). 4) The cleaved SPGP-C resides in the membrane and is resistant to digestion with proteinase K even in the presence of detergents, suggesting a very compact structure. 5) SPGP-C accumulates in virus particles. These unusual features of the cleaved SPGP-C suggest that SPGP-C not only targets the nascent pGP-C to the endoplasmic reticulum membrane but also has additional functions in lymphocytic choriomeningitis virus life cycle.


Assuntos
Glicoproteínas/metabolismo , Vírus da Coriomeningite Linfocítica/química , Precursores de Proteínas/metabolismo , Sinais Direcionadores de Proteínas/fisiologia , Proteínas do Envelope Viral/metabolismo , Animais , Anticorpos , Fracionamento Celular , Linhagem Celular Tumoral , Membrana Celular/metabolismo , Endopeptidase K/farmacologia , Glicoproteínas/biossíntese , Glicoproteínas/química , Meia-Vida , Humanos , Interações Hidrofóbicas e Hidrofílicas , Camundongos , Fragmentos de Peptídeos/genética , Fragmentos de Peptídeos/imunologia , Precursores de Proteínas/química , Transporte Proteico , Transfecção , Proteínas do Envelope Viral/biossíntese , Proteínas do Envelope Viral/química
14.
Biochemistry ; 43(1): 107-17, 2004 Jan 13.
Artigo em Inglês | MEDLINE | ID: mdl-14705936

RESUMO

The eukaryotic signal recognition particle (SRP) is essential for cotranslational targeting of proteins to the endoplasmic reticulum (ER). The SRP Alu domain is specifically required for delaying nascent chain elongation upon signal sequence recognition by SRP and was therefore proposed to interact directly with ribosomes. Using protein cross-linking, we provide experimental evidence that the Alu binding protein SRP14 is in close physical proximity of several ribosomal proteins in functional complexes. Cross-linking occurs even in the absence of a signal sequence in the nascent chain demonstrating that SRP can bind to all translating ribosomes and that close contacts between the Alu domain and the ribosome are independent of elongation arrest activity. Without a signal sequence, SRP14 cross-links predominantly to a protein of the large subunit. Upon signal sequence recognition, certain cross-linked products become detectable or more abundant revealing a change in the Alu domain-ribosome interface. At this stage, the Alu domain of SRP is located at the ribosomal subunit interface since SRP14 can be cross-linked to proteins from the large and small ribosomal subunits. Hence, these studies reveal differential modes of SRP-ribosome interactions mediated by the Alu domain.


Assuntos
Elementos Alu , Proteínas de Ligação a DNA/química , Sinais Direcionadores de Proteínas , Subunidades Proteicas/química , Ribonucleoproteínas/química , Proteínas Ribossômicas/química , Partícula de Reconhecimento de Sinal/química , Sítios de Ligação , Sequência Conservada , Reagentes de Ligações Cruzadas/química , Modelos Químicos , Modelos Moleculares , Estrutura Terciária de Proteína , Ribossomos/química
15.
Science ; 297(5585): 1345-8, 2002 Aug 23.
Artigo em Inglês | MEDLINE | ID: mdl-12193787

RESUMO

Signal recognition particle (SRP), together with its receptor (SR), mediates the targeting of ribosome-nascent chain complexes to the endoplasmic reticulum. Using protein cross-linking, we detected distinct modes in the binding of SRP to the ribosome. During signal peptide recognition, SRP54 is positioned at the exit site close to ribosomal proteins L23a and L35. When SRP54 contacts SR, SRP54 is rearranged such that it is no longer close to L23a. This repositioning may allow the translocon to dock with the ribosome, leading to insertion of the signal peptide into the translocation channel.


Assuntos
Proteínas Ribossômicas/metabolismo , Ribossomos/metabolismo , Proteínas de Saccharomyces cerevisiae , Partícula de Reconhecimento de Sinal/metabolismo , Animais , Centrifugação com Gradiente de Concentração , Reagentes de Ligações Cruzadas , Cães , Guanosina Difosfato/metabolismo , Guanosina Difosfato/farmacologia , Guanosina Trifosfato/metabolismo , Guanilil Imidodifosfato/metabolismo , Guanilil Imidodifosfato/farmacologia , Modelos Moleculares , Proteínas de Plantas/química , Proteínas de Plantas/metabolismo , Testes de Precipitina , Prolactina/genética , Prolactina/metabolismo , Ligação Proteica , Precursores de Proteínas/genética , Precursores de Proteínas/metabolismo , Sinais Direcionadores de Proteínas , Transporte Proteico , Receptores Citoplasmáticos e Nucleares/química , Receptores Citoplasmáticos e Nucleares/metabolismo , Receptores de Peptídeos/química , Receptores de Peptídeos/metabolismo , Proteínas Ribossômicas/química , Partícula de Reconhecimento de Sinal/química , Succinimidas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA