Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Breast Cancer Res Treat ; 151(1): 57-73, 2015 May.
Artigo em Inglês | MEDLINE | ID: mdl-25859923

RESUMO

Metabotropic glutamate receptor 1 (mGluR1/Grm1) is a member of the G-protein-coupled receptor superfamily, which was once thought to only participate in synaptic transmission and neuronal excitability, but has more recently been implicated in non-neuronal tissue functions. We previously described the oncogenic properties of Grm1 in cultured melanocytes in vitro and in spontaneous melanoma development with 100 % penetrance in vivo. Aberrant mGluR1 expression was detected in 60-80 % of human melanoma cell lines and biopsy samples. As most human cancers are of epithelial origin, we utilized immortalized mouse mammary epithelial cells (iMMECs) as a model system to study the transformative properties of Grm1. We introduced Grm1 into iMMECs and isolated several stable mGluR1-expressing clones. Phenotypic alterations in mammary acinar architecture were assessed using three-dimensional morphogenesis assays. We found that mGluR1-expressing iMMECs exhibited delayed lumen formation in association with decreased central acinar cell death, disrupted cell polarity, and a dramatic increase in the activation of the mitogen-activated protein kinase pathway. Orthotopic implantation of mGluR1-expressing iMMEC clones into mammary fat pads of immunodeficient nude mice resulted in mammary tumor formation in vivo. Persistent mGluR1 expression was required for the maintenance of the tumorigenic phenotypes in vitro and in vivo, as demonstrated by an inducible Grm1-silencing RNA system. Furthermore, mGluR1 was found be expressed in human breast cancer cell lines and breast tumor biopsies. Elevated levels of extracellular glutamate were observed in mGluR1-expressing breast cancer cell lines and concurrent treatment of MCF7 xenografts with glutamate release inhibitor, riluzole, and an AKT inhibitor led to suppression of tumor progression. Our results are likely relevant to human breast cancer, highlighting a putative role of mGluR1 in the pathophysiology of breast cancer and the potential of mGluR1 as a novel therapeutic target.


Assuntos
Neoplasias da Mama/genética , Proliferação de Células/genética , Transformação Celular Neoplásica/genética , Receptores de Glutamato Metabotrópico/genética , Animais , Apoptose/genética , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/patologia , Feminino , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Compostos Heterocíclicos com 3 Anéis/administração & dosagem , Humanos , Células MCF-7 , Glândulas Mamárias Animais/efeitos dos fármacos , Glândulas Mamárias Animais/patologia , Camundongos , Receptores de Glutamato Metabotrópico/biossíntese , Riluzol/administração & dosagem , Ensaios Antitumorais Modelo de Xenoenxerto
2.
Front Immunol ; 14: 1151748, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37795090

RESUMO

Background: Immune cell expression profiling from patient samples is critical for the successful development of immuno-oncology agents and is useful to understand mechanism-of-action, to identify exploratory biomarkers predictive of response, and to guide treatment selection and combination therapy strategies. LAG-3 is an inhibitory immune checkpoint that can suppress antitumor T-cell responses and targeting LAG-3, in combination with PD-1, is a rational approach to enhance antitumor immunity that has recently demonstrated clinical success. Here, we sought to identify human immune cell subsets that express LAG-3 and its ligands, to characterize the marker expression profile of these subsets, and to investigate the potential relationship between LAG-3 expressing subsets and clinical outcomes to immuno-oncology therapies. Methods: Comprehensive high-parameter immunophenotyping was performed using mass and flow cytometry of tumor-infiltrating lymphocytes (TILs) and peripheral blood mononuclear cells (PBMCs) from two independent cohorts of samples from patients with various solid tumor types. Profiling of circulating immune cells by single cell RNA-seq was conducted on samples from a clinical trial cohort of melanoma patients treated with immunotherapy. Results: LAG-3 was most highly expressed by subsets of tumor-infiltrating CD8 T central memory (TCM) and effector memory (TEM) cells and was frequently co-expressed with PD-1. We determined that these PD-1+ LAG-3+ CD8 memory T cells exhibited a unique marker profile, with greater expression of activation (CD69, HLA-DR), inhibitory (TIM-3, TIGIT, CTLA-4) and stimulatory (4-1BB, ICOS) markers compared to cells that expressed only PD-1 or LAG-3, or that were negative for both checkpoints. In contrast to tumors, LAG-3 expression was more limited in circulating immune cells from healthy donors and solid tumor patients. Additionally, we found abundant expression of the LAG-3 ligands MHC-II and galectin-3 in diverse immune cell types, whereas FGL1 and LSECtin were minimally expressed by immune cells in the tumor microenvironment (TME). Lastly, we found an inverse relationship between baseline and on-treatment levels of circulating LAG3 transcript-expressing CD8 memory T cells and response to combination PD-1 and CTLA-4 blockade in a clinical trial cohort of melanoma patients profiled by scRNAseq. Conclusions: These results provide insights into the nature of LAG-3- and ligand-expressing immune cells within the TME, and suggest a biological basis for informing mechanistic hypotheses, treatment selection strategies, and combination immunotherapy approaches to support continued development of dual PD-1 and LAG-3 blockade.


Assuntos
Melanoma , Receptor de Morte Celular Programada 1 , Humanos , Antígeno CTLA-4 , Receptor de Morte Celular Programada 1/metabolismo , Leucócitos Mononucleares , Imunofenotipagem , Ligantes , Microambiente Tumoral , Fibrinogênio/uso terapêutico
3.
J Clin Oncol ; 41(15): 2724-2735, 2023 05 20.
Artigo em Inglês | MEDLINE | ID: mdl-36780608

RESUMO

PURPOSE: Nivolumab and relatlimab activity in advanced melanoma with prior progression on anti-programmed death-1/programmed death ligand 1 (PD-(L)1)-containing regimens is under investigation. RELATIVITY-047 demonstrated significantly improved progression-free survival (PFS) for nivolumab and relatlimab over nivolumab in previously untreated advanced melanoma. METHODS: The phase I/IIa, open-label RELATIVITY-020 trial part D assessed efficacy and safety of nivolumab and relatlimab in advanced melanoma with progression during, or within 3 months of, 1 (D1) or ≥ 1 (D2) anti-PD-(L)1-containing regimens. Safety was a primary end point. Objective response rate (coprimary end point) and PFS by blinded independent central review (BICR) were assessed. RESULTS: Five hundred eighteen patients (D1 = 354; D2 = 164) received nivolumab and relatlimab. Among evaluable patients, the objective response rate by BICR was 12.0% (95% CI, 8.8 to 15.8) in D1 (n = 351) and 9.2% (95% CI, 5.2 to 14.7) in D2 (n = 163). Responses appeared to be enriched among patients with tumors expressing programmed death ligand 1 or lymphocyte activation gene 3; however, responses were observed regardless of programmed death ligand 1 and lymphocyte activation gene 3 expression (1%). The median duration of response was not reached (95% CI, 12.9 to not reached) in D1 and 12.8 months (95% CI, 6.9 to 12.9) in D2. The median PFS by BICR was 2.1 months (95% CI, 1.9 to 3.5) in D1 and 3.2 months (95% CI, 1.9 to 3.6) in D2; the 6-month PFS rate was 29.1% (95% CI, 24.2 to 34.1) and 27.7% (95% CI, 20.5 to 35.4), respectively. The grade 3-4 treatment-related adverse event incidence was 15.0% in D1 and 12.8% in D2. One case of grade 3 myocarditis and no treatment-related deaths occurred across part D. CONCLUSION: Nivolumab and relatlimab had a manageable safety profile and demonstrated durable clinical activity in a proportion of patients with heavily pretreated advanced melanoma with prior progression on anti-PD-(L)1-containing regimens.[Media: see text].


Assuntos
Melanoma , Nivolumabe , Humanos , Nivolumabe/efeitos adversos , Anticorpos Monoclonais Humanizados/uso terapêutico , Protocolos de Quimioterapia Combinada Antineoplásica/uso terapêutico
4.
NEJM Evid ; 2(4): EVIDoa2200239, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38320023

RESUMO

BACKGROUND: A phase 2/3 trial ­ A Study of Relatlimab Plus Nivolumab Versus Nivolumab Alone in Participants With Advanced Melanoma (RELATIVITY-047) ­ evaluated nivolumab + relatlimab as a fixed-dose combination and found a significant progression-free survival (PFS) benefit over nivolumab monotherapy in previously untreated unresectable or metastatic melanoma. We now report updated PFS and safety data and the first results for overall survival (OS) and objective response rate (ORR). METHODS: Patients were randomly assigned 1:1 to receive nivolumab 480 mg and relatlimab 160 mg fixed-dose combination or nivolumab 480 mg alone, given intravenously every 4 weeks. PFS (primary end point) according to the Response Evaluation Criteria in Solid Tumors, version 1.1, was assessed by blinded independent central review (BICR). Secondary end points, tested hierarchically, were OS and then ORR per Response Evaluation Criteria in Solid Tumors, version 1.1, per BICR. RESULTS: At a median follow-up of 19.3 months, median PFS according to BICR was 10.2 months (95% confidence interval [CI], 6.5 to 14.8) with nivolumab + relatlimab versus 4.6 months (95% CI, 3.5 to 6.4) with nivolumab (hazard ratio, 0.78; 95% CI, 0.64 to 0.94). Median OS was not reached (NR) (95% CI, 34.2 to NR) with nivolumab + relatlimab versus 34.1 months (95% CI, 25.2 to NR) with nivolumab (hazard ratio, 0.80; 95% CI, 0.64 to 1.01; P=0.059) (prespecified value for statistical significance, P≤0.043). ORRs per BICR were 43.1% (95% CI, 37.9 to 48.4) versus 32.6% (95% CI, 27.8 to 37.7), respectively. Grade 3/4 treatment-related adverse events were observed in 21.1% of patients treated with nivolumab + relatlimab versus 11.1% treated with nivolumab. CONCLUSIONS: The fixed-dose combination of nivolumab + relatlimab showed consistent PFS benefit versus nivolumab with approximately 6 months of additional median follow-up. The combination treatment did not reach the preplanned statistical threshold for OS, with a 10.3 percentage-point difference in ORR. Grade 3/4 treatment-related adverse events were more frequent with nivolumab + relatlimab versus nivolumab. (Funded by Bristol Myers Squibb; ClinicalTrials.gov number, NCT03470922.)


Assuntos
Anticorpos Monoclonais Humanizados , Melanoma , Neoplasias Cutâneas , Humanos , Melanoma/tratamento farmacológico , Nivolumabe/uso terapêutico , Ipilimumab/uso terapêutico , Neoplasias Cutâneas/tratamento farmacológico , Protocolos de Quimioterapia Combinada Antineoplásica , Método Duplo-Cego
5.
Clin Cancer Res ; 29(17): 3352-3361, 2023 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-37058595

RESUMO

PURPOSE: In the phase III CheckMate 238 study, adjuvant nivolumab significantly improved recurrence-free survival (RFS) and distant metastasis-free survival versus ipilimumab in patients with resected stage IIIB-C or stage IV melanoma, with benefit sustained at 4 years. We report updated 5-year efficacy and biomarker findings. PATIENTS AND METHODS: Patients with resected stage IIIB-C/IV melanoma were stratified by stage and baseline programmed death cell ligand 1 (PD-L1) expression and received nivolumab 3 mg/kg every 2 weeks or ipilimumab 10 mg/kg every 3 weeks for four doses and then every 12 weeks, both intravenously for 1 year until disease recurrence, unacceptable toxicity, or withdrawal of consent. The primary endpoint was RFS. RESULTS: At a minimum follow-up of 62 months, RFS with nivolumab remained superior to ipilimumab (HR = 0.72; 95% confidence interval, 0.60-0.86; 5-year rates of 50% vs. 39%). Five-year distant metastasis-free survival (DMFS) rates were 58% with nivolumab versus 51% with ipilimumab. Five-year overall survival (OS) rates were 76% with nivolumab and 72% with ipilimumab (75% data maturity: 228 of 302 planned events). Higher levels of tumor mutational burden (TMB), tumor PD-L1, intratumoral CD8+ T cells and IFNγ-associated gene expression signature, and lower levels of peripheral serum C-reactive protein were associated with improved RFS and OS with both nivolumab and ipilimumab, albeit with limited clinically meaningful predictive value. CONCLUSIONS: Nivolumab is a proven adjuvant treatment for resected melanoma at high risk of recurrence, with sustained, long-term improvement in RFS and DMFS compared with ipilimumab and high OS rates. Identification of additional biomarkers is needed to better predict treatment outcome. See related commentary by Augustin and Luke, p. 3253.


Assuntos
Melanoma , Nivolumabe , Humanos , Nivolumabe/administração & dosagem , Ipilimumab/uso terapêutico , Antígeno B7-H1 , Receptor de Morte Celular Programada 1/uso terapêutico , Protocolos de Quimioterapia Combinada Antineoplásica/uso terapêutico , Recidiva Local de Neoplasia/tratamento farmacológico , Melanoma/tratamento farmacológico , Melanoma/genética , Melanoma/patologia , Adjuvantes Imunológicos/uso terapêutico , Biomarcadores , Melanoma Maligno Cutâneo
6.
Ther Adv Urol ; 13: 17562872211022462, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34408788

RESUMO

BACKGROUND: Prostate cancer (PCa) phenotypes vary from indolent to aggressive. Molecular subtyping may be useful in predicting aggressive cancers and directing therapy. One such subtype involving deletions of chromodomain helicase DNA binding protein 1 (CHD1), a tumor suppressor gene, are found in 10-26% of PCa tumors. In this study, we evaluate the functional cellular effects that follow CHD1 deletion. METHODS: CHD1 was knocked out (KO) in the non-tumorigenic, human papillomavirus 16 (HPV16)-immortalized prostate epithelial cell line, RWPE-1, using CRISPR/Cas9. In vitro assays such as T7 endonuclease assay, western blot, and sequencing were undertaken to characterize the CHD1 KO clones. Morphologic and functional assays for cell adhesion and viability were performed. To study expression of extracellular matrix (ECM) and adhesion molecules, a real-time (RT) profiler assay was performed using RWPE-1 parental, non-target cells (NT2) and CHD1 KO cells. RESULT: Compared to parental RWPE-1 and non-target cells (NT2), the CHD1 KO cells had a smaller, rounder morphology and were less adherent under routine culture conditions. Compared to parental cells, CHD1 KO cells showed a reduction in ECM and adhesion molecules as well as a greater proportion of viable suspension cells when cultured on standard tissue culture plates and on plates coated with laminin, fibronectin or collagen I. CHD1 KO cells showed a decrease in the expression of secreted protein acidic and rich in cysteine (SPARC), matrix metalloproteinase 2 (MMP2), integrin subunit alpha 2 (ITGA2), integrin subunit alpha 5 (ITGA5), integrin subunit alpha 6 (ITGA6), fibronectin (FN1), laminin subunit beta-3 precursor (LAMB3), collagen, tenascin and vitronectin as compared to parental and NT2 cells. CONCLUSION: These data suggest that in erythroblast transformation specific (ETS) fusion-negative, phosphatase and tensin homolog (PTEN) wildtype PCa, deletion of CHD1 alters cell-cell and cell-matrix adhesion dynamics, suggesting an important role for CHD1 in the development and progression of PCa.

7.
Nat Commun ; 9(1): 4821, 2018 11 16.
Artigo em Inglês | MEDLINE | ID: mdl-30446652

RESUMO

Fusions involving the oncogenic gene RET have been observed in thyroid and lung cancers. Here we report RET gene alterations, including amplification, missense mutations, known fusions, novel fusions, and rearrangements in breast cancer. Their frequency, oncogenic potential, and actionability in breast cancer are described. Two out of eight RET fusions (NCOA4-RET and a novel RASGEF1A-RET fusion) and RET amplification were functionally characterized and shown to activate RET kinase and drive signaling through MAPK and PI3K pathways. These fusions and RET amplification can induce transformation of non-tumorigenic cells, support xenograft tumor formation, and render sensitivity to RET inhibition. An index case of metastatic breast cancer progressing on HER2-targeted therapy was found to have the NCOA4-RET fusion. Subsequent treatment with the RET inhibitor cabozantinib led to a rapid clinical and radiographic response. RET alterations, identified by genomic profiling, are promising therapeutic targets and are present in a subset of breast cancers.


Assuntos
Neoplasias da Mama/genética , Transformação Celular Neoplásica/genética , Regulação Neoplásica da Expressão Gênica , Proteínas de Fusão Oncogênica/genética , Proteínas Proto-Oncogênicas c-ret/genética , Anilidas/farmacologia , Animais , Antineoplásicos/farmacologia , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/metabolismo , Neoplasias da Mama/patologia , Linhagem Celular Tumoral , Transformação Celular Neoplásica/efeitos dos fármacos , Transformação Celular Neoplásica/metabolismo , Transformação Celular Neoplásica/patologia , Feminino , Humanos , Células MCF-7 , Camundongos , Camundongos Nus , Proteínas Quinases Ativadas por Mitógeno/genética , Proteínas Quinases Ativadas por Mitógeno/metabolismo , Células NIH 3T3 , Coativadores de Receptor Nuclear/genética , Coativadores de Receptor Nuclear/metabolismo , Proteínas de Fusão Oncogênica/antagonistas & inibidores , Proteínas de Fusão Oncogênica/metabolismo , Fosfatidilinositol 3-Quinases/genética , Fosfatidilinositol 3-Quinases/metabolismo , Piperidinas/farmacologia , Proteínas Proto-Oncogênicas c-ret/antagonistas & inibidores , Proteínas Proto-Oncogênicas c-ret/metabolismo , Piridinas/farmacologia , Quinazolinas/farmacologia , Receptor ErbB-2/genética , Receptor ErbB-2/metabolismo , Transdução de Sinais , Ensaios Antitumorais Modelo de Xenoenxerto , Fatores ras de Troca de Nucleotídeo Guanina/genética , Fatores ras de Troca de Nucleotídeo Guanina/metabolismo
8.
Oncotarget ; 8(27): 44639-44653, 2017 Jul 04.
Artigo em Inglês | MEDLINE | ID: mdl-28591718

RESUMO

Recent evidence suggests that glutamate signaling plays an important role in cancer. Riluzole is a glutamate release inhibitor and FDA-approved drug for the treatment of amyotrophic lateral sclerosis. It has been investigated as an inhibitor of cancer cell growth and tumorigenesis with the intention of repurposing it for the treatment of cancer. Riluzole is thought to act by indirectly inhibiting glutamate signaling. However, the specific effects of riluzole in breast cancer cells are not well understood. In this study, the anti-cancer effects of riluzole were explored in a panel of breast cancer cell lines in comparison to the metabotropic glutamate receptor 1-specific inhibitor BAY 36-7620. While both drugs inhibited breast cancer cell proliferation, there were distinct functional effects suggesting that riluzole action may be metabotropic glutamate receptor 1-independent. Riluzole induced mitotic arrest independent of oxidative stress while BAY 36-7620 had no measurable effect on mitosis. BAY 36-7620 had a more pronounced and significant effect on DNA damage than riluzole. Riluzole altered cellular metabolism as demonstrated by changes in oxidative phosphorylation and cellular metabolite levels. These results provide a better understanding of the functional action of riluzole in the treatment of breast cancer.


Assuntos
Antineoplásicos/farmacologia , Receptores de Glutamato Metabotrópico/antagonistas & inibidores , Riluzol/farmacologia , Neoplasias da Mama/genética , Neoplasias da Mama/metabolismo , Ciclo Celular/efeitos dos fármacos , Ciclo Celular/genética , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Dano ao DNA , Relação Dose-Resposta a Droga , Metabolismo Energético , Feminino , Pontos de Checagem da Fase G2 do Ciclo Celular/efeitos dos fármacos , Expressão Gênica , Perfilação da Expressão Gênica , Humanos , Mitose/efeitos dos fármacos , Mitose/genética , Fosforilação Oxidativa/efeitos dos fármacos , Receptores de Glutamato Metabotrópico/genética , Receptores de Glutamato Metabotrópico/metabolismo , Transdução de Sinais/efeitos dos fármacos
9.
NPJ Breast Cancer ; 3: 5, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28649645

RESUMO

A coding region polymorphism exists in the TP53 gene (Pro47Ser; rs1800371) in individuals of African descent, which reduces p53 tumor suppressor function in a mouse model. It has been unclear whether this functionally significant polymorphism alters cancer risk in humans. This analysis included 6907 women with breast cancer and 7644 controls from the AMBER, ROOT, and AABC consortia. We used multivariable logistic regression to estimate associations between the TP53 Pro47Ser allele and overall breast cancer risk. Because polymorphisms in TP53 tend to be associated with cancer risk in pre-menopausal women, we also limited our analyses to this population in the AMBER and ROOT consortia, where menopausal status was known, and conducted a fixed effects meta-analysis. In an analysis of all women in the AMBER, ROOT, and AABC consortia, we found no evidence for association of the Pro47Ser variant with breast cancer risk. However, when we restricted our analysis to only pre-menopausal women from the AMBER and ROOT consortia, there was a per allele odds ratio of 1.72 (95% confidence interval 1.08-2.76; p-value = 0.023). Although the Pro47Ser variant was not associated with overall breast cancer risk, it may increase risk among pre-menopausal women of African ancestry. Following up on more studies in human populations may better elucidate the role of this variant in breast cancer etiology. However, because of the low frequency of the polymorphism in women of African ancestry, its impact at a population level may be minimal.

10.
Biomark Cancer ; 8(Suppl 1): 15-25, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-26997874

RESUMO

Defects in DNA repair lead to genomic instability and play a critical role in cancer development. Understanding the process by which DNA damage repair is altered or bypassed in cancer may identify novel therapeutic targets and lead to improved patient outcomes. Poly(adenosine diphosphate-ribose) polymerase 1 (PARP1) has an important role in DNA repair, and novel therapeutics targeting PARP1 have been developed to treat cancers with defective DNA repair pathways. Despite treatment successes with PARP inhibitors (PARPi), intrinsic and acquired resistances have been observed. Preclinical studies and clinical trials in cancer suggest that combination therapy using PARPi and platinating agents is more effective than monotherapy in circumventing drug resistance mechanisms. Additionally, identification of biomarkers in response to PARPi will lead to improved patient selection for targeted cancer treatment. Recent technological advances have provided the necessary tools to examine many potential avenues to develop such biomarkers. This review examines the mechanistic rationale of PARP inhibition and potential biomarkers in their development for personalized therapy.

11.
Biomark Cancer ; 8(Supple 1): 1-14, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-26917980

RESUMO

Significant advances in our knowledge of cancer genomes are rapidly changing the way we think about tumor biology and the heterogeneity of cancer. Recent successes in genomically-guided treatment approaches accompanied by more sophisticated sequencing techniques have paved the way for deeper investigation into the landscape of genomic rearrangements in cancer. While considerable research on solid tumors has focused on point mutations that directly alter the coding sequence of key genes, far less is known about the role of somatic rearrangements. With many recurring alterations observed across tumor types, there is an obvious need for functional characterization of these genomic biomarkers in order to understand their relevance to tumor biology, therapy, and prognosis. As personalized therapy approaches are turning toward genomic alterations for answers, these biomarkers will become increasingly relevant to the practice of precision medicine. This review discusses the emerging role of genomic rearrangements in breast cancer, with a particular focus on fusion genes. In addition, it raises several key questions on the therapeutic value of such rearrangements and provides a framework to evaluate their significance as predictive and prognostic biomarkers.

12.
Cancer Lett ; 350(1-2): 52-60, 2014 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-24747123

RESUMO

The human homologue of mouse double minute 2 (MDM2) is overexpressed in tumors and contributes to tumorigenesis through inhibition of p53 activity. We investigated the effect of the anti-estrogen fulvestrant on MDM2 expression and sensitivity of estrogen receptor positive human breast cancer cell lines to chemotherapeutics. Fulvestrant down-regulated MDM2 through increased protein turnover. Fulvestrant blocked estrogen-dependent up-regulation of MDM2 and decreased basal expression of MDM2 in the absence of estradiol. As combinations of fulvestrant with doxorubicin, etoposide or paclitaxel were synergistic, altering cell cycle distribution and increasing cell death, this provides rationale for testing combinatorial chemotherapy with fulvestrant as a novel therapeutic strategy for patients with advanced breast cancer.


Assuntos
Antineoplásicos Hormonais/uso terapêutico , Neoplasias da Mama/tratamento farmacológico , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Estradiol/análogos & derivados , Antagonistas de Estrogênios/uso terapêutico , Proteínas Proto-Oncogênicas c-mdm2/metabolismo , Receptores de Estrogênio/antagonistas & inibidores , Apoptose/efeitos dos fármacos , Ciclo Celular/genética , Linhagem Celular Tumoral , Senescência Celular/efeitos dos fármacos , Inibidor de Quinase Dependente de Ciclina p21/biossíntese , Regulação para Baixo/efeitos dos fármacos , Doxorrubicina/farmacologia , Estradiol/uso terapêutico , Etoposídeo/farmacologia , Feminino , Fulvestranto , Humanos , Células MCF-7 , Paclitaxel/farmacologia , Proteínas Proto-Oncogênicas c-mdm2/biossíntese , Proteínas Proto-Oncogênicas c-mdm2/genética , RNA Mensageiro/biossíntese , Proteína Supressora de Tumor p53/biossíntese
13.
J Agric Food Chem ; 61(36): 8533-40, 2013 Sep 11.
Artigo em Inglês | MEDLINE | ID: mdl-23898832

RESUMO

Tocopherols are the major source of dietary vitamin E. In this study, the growth inhibitory effects of different forms of tocopherols (T), tocopheryl phosphates (TP), and tocopherol quinones (TQ) on human colon cancer HCT116 and HT29 cells were investigated. δ-T was more active than γ-T in inhibiting colon cancer cell growth, decreasing cancer cell colony formation, and inducing apoptosis; however, α-T was rather ineffective. Similarly, the rate of cellular uptake also followed the ranking order δ-T > γ-T ≫ α-T. TP and TQ generally had higher inhibitory activities than their parent compounds. Interestingly, the γ forms of TP and TQ were more active than the δ forms in inhibiting cancer cell growth, whereas the α forms were the least effective. The potencies of γ-TQ and δ-TQ (showing IC50 values of ∼0.8 and ∼2 µM on HCT116 cells after a 72 h incubation, respectively) were greater than 100-fold and greater than 20-fold higher, respectively, than those of their parent tocopherols. Induction of cancer cell apoptosis by δ-T, γ-TP, and γ-TQ was characterized by the cleavage of caspase 3 and PARP1 and DNA fragmentation. These studies demonstrated the higher growth inhibitory activity of δ-T than γ-T, the even higher activities of the γ forms of TP and TQ, and the ineffectiveness of the α forms of tocopherol and their metabolites against colon cancer cells.


Assuntos
Antineoplásicos/farmacologia , Proliferação de Células/efeitos dos fármacos , Neoplasias do Colo/patologia , Fosfatos/farmacologia , Quinonas/farmacologia , Tocoferóis/farmacologia , Apoptose/efeitos dos fármacos , Neoplasias do Colo/metabolismo , Células HCT116 , Células HT29 , Humanos , Tocoferóis/metabolismo
14.
Int J Oncol ; 43(6): 1817-23, 2013 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-24064862

RESUMO

Mesenchymal stromal cells (MSCs) are multipotent fibroblast-like cells located in the bone marrow that localize to areas of tissue damage including wounds and solid tumors. Within the tumor microenvironment, MSCs adopt the phenotype of carcinoma-associated fibroblasts (CAFs) and stimulate tumor growth. Production of the chemokine CXCL12, also known as stromal cell-derived factor 1 (SDF-1), by MSCs is required for their in vitro migration in response to tumor cells and has also been implicated in stimulation of tumor growth. The tumor suppressor p53 regulates cellular migration, CXCL12 production and the promotion of tumor growth by carcinoma-associated fibroblasts (CAFs). We investigated the role of p53 in MSC migration to tumors. P53 inhibits the migration of MSCs in response to tumor cells in conjunction with a decrease in CXCL12 transcription. Conversely, decreased p53 activity leads to enhanced MSC migration. Interestingly, increased p53 activity inhibits MSC migration even in the context of high concentrations of exogenous CXCL12. These data show that stromal p53 status impacts the recruitment of MSCs to solid tumors through both regulation of CXCL12 production as well as other mechanisms. Stromal p53 may influence other important aspects of tumor biology such as tumor growth and metastasis through mechanisms distinct from CXCL12.


Assuntos
Quimiocina CXCL12/metabolismo , Células-Tronco Mesenquimais/metabolismo , Proteína Supressora de Tumor p53/metabolismo , Animais , Linhagem Celular Tumoral , Movimento Celular , Quimiocina CXCL12/genética , Meios de Cultivo Condicionados/farmacologia , Inibidor de Quinase Dependente de Ciclina p21/metabolismo , Humanos , Imidazóis/farmacologia , Interleucina-8/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Piperazinas/farmacologia , Proteínas Proto-Oncogênicas c-mdm2/antagonistas & inibidores , Interferência de RNA , RNA Interferente Pequeno , Transdução de Sinais , Microambiente Tumoral , Proteína Supressora de Tumor p53/genética
15.
Cancer Metab ; 1(1): 20, 2013 Nov 07.
Artigo em Inglês | MEDLINE | ID: mdl-24279929

RESUMO

BACKGROUND: Although cells require nutrients to proliferate, most nutrient exchange rates of the NCI60 panel of cancer cell lines correlate poorly with their proliferation rate. Here, we provide evidence indicating that this inconsistency is rooted in the variability of cell size. RESULTS: We integrate previously reported data characterizing genome copy number variations, gene expression, protein expression and exchange fluxes with our own measurements of cell size and protein content in the NCI60 panel of cell lines. We show that protein content, DNA content, and protein synthesis per cell are proportional to the cell volume, and that larger cells proliferate slower than smaller cells. We estimate the metabolic fluxes of these cell lines and show that their magnitudes are proportional to their protein synthesis rate and, after correcting for cell volume, to their proliferation rate. At the level of gene expression, we observe that genes expressed at higher levels in smaller cells are enriched for genes involved in cell cycle, while genes expressed at higher levels in large cells are enriched for genes expressed in mesenchymal cells. The latter finding is further corroborated by the induction of those same genes following treatment with TGFß, and the high vimentin but low E-cadherin protein levels in the larger cells. We also find that aromatase inhibitors, statins and mTOR inhibitors preferentially inhibit the in vitro growth of cancer cells with high protein synthesis rates per cell. CONCLUSIONS: The NCI60 cell lines display various metabolic activities, and the type of metabolic activity that they possess correlates with their cell volume and protein content. In addition to cell proliferation, cell volume and/or biomarkers of protein synthesis may predict response to drugs targeting cancer metabolism.

16.
PLoS One ; 8(7): e69851, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23922822

RESUMO

Several epidemiological studies have suggested a link between melanoma and breast cancer. Metabotropic glutamate receptor 1 (GRM1), which is involved in many cellular processes including proliferation and differentiation, has been implicated in melanomagenesis, with ectopic expression of GRM1 causing malignant transformation of melanocytes. This study was undertaken to evaluate GRM1 expression and polymorphic variants in GRM1 for associations with breast cancer phenotypes. Three single nucleotide polymorphisms (SNPs) in GRM1 were evaluated for associations with breast cancer clinicopathologic variables. GRM1 expression was evaluated in human normal and cancerous breast tissue and for in vitro response to hormonal manipulation. Genotyping was performed on genomic DNA from over 1,000 breast cancer patients. Rs6923492 and rs362962 genotypes associated with age at diagnosis that was highly dependent upon the breast cancer molecular phenotype. The rs362962 TT genotype also associated with risk of estrogen receptor or progesterone receptor positive breast cancer. In vitro analysis showed increased GRM1 expression in breast cancer cells treated with estrogen or the combination of estrogen and progesterone, but reduced GRM1 expression with tamoxifen treatment. Evaluation of GRM1 expression in human breast tumor specimens demonstrated significant correlations between GRM1 staining with tissue type and molecular features. Furthermore, analysis of gene expression data from primary breast tumors showed that high GRM1 expression correlated with a shorter distant metastasis-free survival as compared to low GRM1 expression in tamoxifen-treated patients. Additionally, induced knockdown of GRM1 in an estrogen receptor positive breast cancer cell line correlated with reduced cell proliferation. Taken together, these findings suggest a functional role for GRM1 in breast cancer.


Assuntos
Neoplasias da Mama/genética , Neoplasias da Mama/patologia , Estudos de Associação Genética , Predisposição Genética para Doença , Polimorfismo de Nucleotídeo Único/genética , Receptores de Glutamato Metabotrópico/genética , Adulto , Idoso , Idoso de 80 Anos ou mais , Neoplasias da Mama/classificação , Neoplasias da Mama/epidemiologia , Proliferação de Células/efeitos dos fármacos , Estudos de Coortes , Demografia , Intervalo Livre de Doença , Estradiol/farmacologia , Receptor alfa de Estrogênio/metabolismo , Feminino , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Humanos , Incidência , Pessoa de Meia-Idade , Metástase Neoplásica , Recidiva Local de Neoplasia/genética , Recidiva Local de Neoplasia/patologia , Fenótipo , Fosforilação/efeitos dos fármacos , Receptores de Glutamato Metabotrópico/metabolismo , Tamoxifeno/análogos & derivados , Tamoxifeno/farmacologia , Análise Serial de Tecidos , Adulto Jovem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA