Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 222
Filtrar
Mais filtros

Tipo de documento
Intervalo de ano de publicação
1.
Mol Cell Proteomics ; : 100818, 2024 Jul 22.
Artigo em Inglês | MEDLINE | ID: mdl-39047911

RESUMO

Candida albicans is a diploid pathogen known for its ability to live as a commensal fungus in healthy individuals, but causing both superficial infections and disseminated candidiasis in immunocompromised patients where it is associated with high morbidity and mortality. Its success in colonizing the human host is attributed to a wide range of virulence traits that modulate interactions between the host and the pathogen, such as optimal growth rate at 37 ºC, the ability to switch between yeast and hyphal forms and a remarkable genomic and phenotypic plasticity. A fascinating aspect of its biology is a prominent heterogeneous proteome that arises from frequent genomic rearrangements, high allelic variation, and high levels of amino acid misincorporations in proteins. This leads to increased morphological and physiological phenotypic diversity of high adaptive potential, but the scope of such protein mistranslation is poorly understood due to technical difficulties in detecting and quantifying amino acid misincorporation events in complex protein samples. We have developed and optimized mass spectrometry and bioinformatics pipelines capable of identifying rare amino acid misincorporation events at the proteome level. We have also analysed the proteomic profile of an engineered C. albicans strain that exhibits high level of leucine misincorporation at protein CUG sites and employed an in vivo quantitative gain-of-function fluorescence reporter system to validate our LC-MS/MS data. C. albicans misincorporates amino acids above the background level at protein sites of diverse codons, particularly at CUG, confirming our previous data on the quantification of leucine incorporation at single CUG sites of recombinant reporter proteins, but increasing misincorporation of Leucine at these sites does not alter the translational fidelity of the other codons. These findings indicate that the C. albicans statistical proteome exceeds prior estimates, suggesting that its highly plastic phenome may also be modulated by environmental factors due to translational ambiguity.

2.
J Neurochem ; 168(7): 1237-1253, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38327008

RESUMO

The disruption of mitochondria-associated endoplasmic reticulum (ER) membranes (MAMs) plays a relevant role in Alzheimer's disease (AD). MAMs have been implicated in neuronal dysfunction and death since it is associated with impairment of functions regulated in this subcellular domain, including lipid synthesis and trafficking, mitochondria dysfunction, ER stress-induced unfolded protein response (UPR), apoptosis, and inflammation. Since MAMs play an important role in lipid metabolism, in this study we characterized and investigated the lipidome alterations at MAMs in comparison with other subcellular fractions, namely microsomes and mitochondria, using an in vitro model of AD, namely the mouse neuroblastoma cell line (N2A) over-expressing the APP familial Swedish mutation (APPswe) and the respective control (WT) cells. Phospholipids (PLs) and fatty acids (FAs) were isolated from the different subcellular fractions and analyzed by HILIC-LC-MS/MS and GC-MS, respectively. In this in vitro AD model, we observed a down-regulation in relative abundance of some phosphatidylcholine (PC), lysophosphatidylcholine (LPC), and lysophosphatidylethanolamine (LPE) species with PUFA and few PC with saturated and long-chain FA. We also found an up-regulation of CL, and antioxidant alkyl acyl PL. Moreover, multivariate analysis indicated that each organelle has a specific lipid profile adaptation in N2A APPswe cells. In the FAs profile, we found an up-regulation of C16:0 in all subcellular fractions, a decrease of C18:0 levels in total fraction (TF) and microsomes fraction, and a down-regulation of 9-C18:1 was also found in mitochondria fraction in the AD model. Together, these results suggest that the over-expression of the familial APP Swedish mutation affects lipid homeostasis in MAMs and other subcellular fractions and supports the important role of lipids in AD physiopathology.


Assuntos
Doença de Alzheimer , Lipidômica , Doença de Alzheimer/metabolismo , Doença de Alzheimer/patologia , Doença de Alzheimer/genética , Animais , Camundongos , Lipidômica/métodos , Linhagem Celular Tumoral , Membranas Mitocondriais/metabolismo , Mitocôndrias/metabolismo , Fosfolipídeos/metabolismo , Precursor de Proteína beta-Amiloide/genética , Precursor de Proteína beta-Amiloide/metabolismo , Humanos , Metabolismo dos Lipídeos/fisiologia , Membranas Associadas à Mitocôndria
3.
Eur J Clin Invest ; : e14289, 2024 Jul 24.
Artigo em Inglês | MEDLINE | ID: mdl-39046266

RESUMO

BACKGROUND: Infertility is a major health issue, affecting 15% of reproductive-age couples with male factors contributing to 50% of cases. Asthenozoospermia (AS), or low sperm motility, is a common cause of male infertility with complex aetiology, involving genetic and metabolic alterations, inflammation and oxidative stress. However, the molecular mechanisms behind low motility are unclear. In this study, we used a metabolomics approach to identify metabolic biomarkers and pathways involved in sperm motility. METHODS: We compared the metabolome and lipidome of spermatozoa of men with normozoospermia (n = 44) and AS (n = 22) using untargeted LC-MS and the metabolome of seminal fluid using 1H-NMR. Additionally, we evaluated the seminal fluid redox status to assess the oxidative stress in the ejaculate. RESULTS: We identified 112 metabolites and 209 lipids in spermatozoa and 27 metabolites in the seminal fluid of normozoospermic and asthenozoospermic men. PCA analysis of the spermatozoa's metabolomics and lipidomics data showed a clear separation between groups. Spermatozoa of asthenozoospermic men presented lower levels of several amino acids, and increased levels of energetic substrates and lysophospholipids. However, the metabolome and redox status of the seminal fluid was not altered inAS. CONCLUSIONS: Our results indicate impaired metabolic pathways associated with redox homeostasis and amino acid, energy and lipid metabolism in AS. Taken together, these findings suggest that the metabolome and lipidome of human spermatozoa are key factors influencing their motility and that oxidative stress exposure during spermatogenesis or sperm maturation may be in the aetiology of decreased motility in AS.

4.
J Inherit Metab Dis ; 47(4): 731-745, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38356271

RESUMO

Medium-chain acyl-CoA dehydrogenase deficiency (MCADD) is the most prevalent mitochondrial fatty acid ß-oxidation disorder. In this study, we assessed the variability of the lipid profile in MCADD by analysing plasma samples obtained from 25 children with metabolically controlled MCADD (following a normal diet with frequent feeding and under l-carnitine supplementation) and 21 paediatric control subjects (CT). Gas chromatography-mass spectrometry was employed for the analysis of esterified fatty acids, while high-resolution C18-liquid chromatography-mass spectrometry was used to analyse lipid species. We identified a total of 251 lipid species belonging to 15 distinct lipid classes. Principal component analysis revealed a clear distinction between the MCADD and CT groups. Univariate analysis demonstrated that 126 lipid species exhibited significant differences between the two groups. The lipid species that displayed the most pronounced variations included triacylglycerols and phosphatidylcholines containing saturated and monounsaturated fatty acids, specifically C14:0 and C16:0, which were found to be more abundant in MCADD. The observed changes in the plasma lipidome of children with non-decompensated MCADD suggest an underlying alteration in lipid metabolism. Therefore, longitudinal monitoring and further in-depth investigations are warranted to better understand whether such alterations are specific to MCADD children and their potential long-term impacts.


Assuntos
Acil-CoA Desidrogenase , Erros Inatos do Metabolismo Lipídico , Lipidômica , Fosfolipídeos , Triglicerídeos , Humanos , Erros Inatos do Metabolismo Lipídico/sangue , Lipidômica/métodos , Criança , Masculino , Feminino , Triglicerídeos/sangue , Fosfolipídeos/sangue , Pré-Escolar , Acil-CoA Desidrogenase/deficiência , Lactente , Adolescente , Metabolismo dos Lipídeos , Estudos de Casos e Controles , Ácidos Graxos/sangue , Ácidos Graxos/metabolismo , Cromatografia Gasosa-Espectrometria de Massas/métodos , Carnitina/sangue
5.
Artigo em Inglês | MEDLINE | ID: mdl-38699908

RESUMO

The effects of two prepared feeds were tested on growth, survival, enzymatic activity, nutritive reserves in the digestive gland and oxygen consumption of Octopus maya juveniles. For the first time, a semihumid paste (HD, control) and a dry diet, in pelleted form (PD, experimental) with the same formulation were used for this species. The experiment lasted for 42 days. Results indicate that growth rates were similar for both diets (p > 0.05); however, survival (70%) was higher with the PD compared to the HD (48%) (p < 0.05). The performance index was higher for octopuses fed the PD (p < 0.05). No differences in acid proteases activity were observed. However, a higher activity of alkaline proteases in the octopuses fed the PD was observed (p < 0.05). Ingestion rate was higher for octopuses fed the PD. Routine energy inversion was similar in both treatments (p > 0.05). A greater energy inversion was observed in octopuses fed the PD, whose active metabolism was double compared to the octopuses fed the HD. Results showed that the PD promoted similar growth compared to the HD diet but favored survival, and a greater investment in the active metabolism, reflected in the apparent heat increase.

6.
J Proteome Res ; 22(9): 2995-3008, 2023 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-37606915

RESUMO

Autoimmune diseases (AID), such as systemic lupus erythematosus (SLE) and systemic sclerosis (SS), are complex conditions involving immune system dysregulation. Diagnosis is challenging, requiring biomarkers for improved detection and prediction of relapses. Lipids have emerged as potential biomarkers due to their role in inflammation and immune response. This study uses an untargeted C18 RP-LC-MS lipidomics approach to comprehensively assess changes in lipid profiles in patients with SLE and SS. By analyzing whole blood and plasma, the study aims to simplify the lipidomic analysis, explore cellular-level lipids, and compare lipid signatures of SLE and SS with healthy controls. Our findings showed variations in the lipid profile of SLE and SS. Sphingomyelin and ceramide molecular species showed significant increases in plasma samples from SS patients, suggesting an atherosclerotic profile and potentially serving as lipid biomarkers. Phosphatidylserine species in whole blood from SLE patients exhibited elevated levels supporting previously reported dysregulated processes of cell death and defective clearance of dying cells in this AID. Moreover, decreased phospholipids bearing PUFA were observed, potentially attributed to the degradation of these species through lipid peroxidation processes. Further studies are needed to better understand the role of lipids in the pathological mechanisms underlying SLE and SS.

7.
Mol Cell Biochem ; 2023 Oct 30.
Artigo em Inglês | MEDLINE | ID: mdl-37902886

RESUMO

BACKGROUND: Heart failure (HF) often disrupts the protein quality control (PQC) system leading to protein aggregate accumulation. Evidence from tissue biopsies showed that exercise restores PQC system in HF; however, little is known about its effects on plasma proteostasis. AIM: To determine the effects of exercise training on the load and composition of plasma SDS-resistant protein aggregates (SRA) in patients with HF with reduced ejection fraction (HFrEF). METHODS: Eighteen patients with HFrEF (age: 63.4 ± 6.5 years; LVEF: 33.4 ± 11.6%) participated in a 12-week combined (aerobic plus resistance) exercise program (60 min/session, twice per week). The load and content of circulating SRA were assessed using D2D SDS-PAGE and mass spectrometry. Cardiorespiratory fitness, quality of life, and circulating levels of high-sensitive C-reactive protein, N-terminal pro-B-type natriuretic peptide (NT-proBNP), haptoglobin and ficolin-3, were also evaluated at baseline and after the exercise program. RESULTS: The exercise program decreased the plasma SRA load (% SRA/total protein: 38.0 ± 8.9 to 36.1 ± 9.7%, p = 0.018; % SRA/soluble fraction: 64.3 ± 27.1 to 59.8 ± 27.7%, p = 0.003). Plasma SRA of HFrEF patients comprised 31 proteins, with α-2-macroglobulin and haptoglobin as the most abundant ones. The exercise training significantly increased haptoglobin plasma levels (1.03 ± 0.40 to 1.11 ± 0.46, p = 0.031), while decreasing its abundance in SRA (1.83 ± 0.54 × 1011 to 1.51 ± 0.59 × 1011, p = 0.049). Cardiorespiratory fitness [16.4(5.9) to 19.0(5.2) ml/kg/min, p = 0.002], quality of life, and circulating NT-proBNP [720.0(850.0) to 587.0(847.3) pg/mL, p = 0.048] levels, also improved after the exercise program. CONCLUSION: Exercise training reduced the plasma SRA load and enhanced PQC, potentially via haptoglobin-mediated action, while improving cardiorespiratory fitness and quality of life of patients with HFrEF.

8.
Mar Drugs ; 21(12)2023 Dec 06.
Artigo em Inglês | MEDLINE | ID: mdl-38132950

RESUMO

Microalgae are recognized as a relevant source of bioactive compounds. Among these bioactive products, lipids, mainly glycolipids, have been shown to present immunomodulatory properties with the potential to mitigate chronic inflammation. This study aimed to evaluate the anti-inflammatory effect of polar lipids isolated from Nannochloropsis oceanica and Chlorococcum amblystomatis. Three fractions enriched in (1) digalactosyldiacylglycerol (DGDG) and sulfoquinovosyldiacylglycerol (SQDG), (2) monogalactosyldiacylglycerol (MGDG), and (3) diacylglyceryl-trimethylhomoserine (DGTS) and phospholipids (PL) were obtained from the total lipid extracts (TE) of N. oceanica and C. amblystomatis, and their anti-inflammatory effect was assessed by analyzing their capacity to counteract nitric oxide (NO) production and transcription of pro-inflammatory genes Nos2, Ptgs2, Tnfa, and Il1b in lipopolysaccharide (LPS)-activated macrophages. For both microalgae, TE and Fractions 1 and 3 strongly inhibited NO production, although to different extents. A strong reduction in the LPS-induced transcription of Nos2, Ptgs2, Tnfa, and Il1b was observed for N. oceanica and C. amblystomatis lipids. The most active fractions were the DGTS-and-PL-enriched fraction from N. oceanica and the DGDG-and-SQDG-enriched fraction from C. amblystomatis. Our results reveal that microalgae lipids have strong anti-inflammatory capacity and may be explored as functional ingredients or nutraceuticals, offering a natural solution to tackle chronic inflammation-associated diseases.


Assuntos
Microalgas , Estramenópilas , Humanos , Lipopolissacarídeos/farmacologia , Ciclo-Oxigenase 2 , Macrófagos , Anti-Inflamatórios/farmacologia , Inflamação/induzido quimicamente , Inflamação/tratamento farmacológico
9.
Int J Mol Sci ; 24(14)2023 Jul 11.
Artigo em Inglês | MEDLINE | ID: mdl-37511067

RESUMO

The exposure of skin cells to UV radiation leads to redox imbalances and inflammation. The present study investigates a lipid extract obtained from the microalga Nannochloropsis oceanica as a potential protector against UVB-induced disturbances in human keratinocytes. The findings of this study show that the Nannochloropsis oceanica extract significantly inhibits UVB-induced cell death while concurrently decreasing the activity of pro-oxidative enzymes (xanthine and NADPH oxidase) and reducing the levels of ROS. Furthermore, the extract augments the activity of antioxidant enzymes (superoxide dismutases and catalase), as well as glutathione/thioredoxin-dependent systems in UVB-irradiated cells. The expression of Nrf2 factor activators (p62, KAP1, p38) was significantly elevated, while no impact was observed on Nrf2 inhibitors (Keap1, Bach1). The antioxidant activity of the extract was accompanied by the silencing of overexpressed membrane transporters caused by UVB radiation. Furthermore, the Nannochloropsis oceanica extract exhibited anti-inflammatory effects in UVB-irradiated keratinocytes by decreasing the levels of TNFα, 8-iso prostaglandin F2, and 4-HNE-protein adducts. In conclusion, the lipid components of Nannochloropsis oceanica extract effectively prevent the pro-oxidative and pro-inflammatory effects of UVB radiation in keratinocytes, thereby stabilizing the natural metabolism of skin cells.


Assuntos
Microalgas , Estramenópilas , Humanos , Microalgas/metabolismo , Estresse Oxidativo , Proteína 1 Associada a ECH Semelhante a Kelch/metabolismo , Raios Ultravioleta/efeitos adversos , Fator 2 Relacionado a NF-E2/metabolismo , Queratinócitos/metabolismo , Antioxidantes/farmacologia , Estramenópilas/metabolismo , Lipídeos/farmacologia
10.
Int J Mol Sci ; 24(18)2023 Sep 20.
Artigo em Inglês | MEDLINE | ID: mdl-37762626

RESUMO

Ultraviolet B (UVB) radiation induces oxidative stress in skin cells, generating reactive oxygen species (ROS) and perturbing enzyme-mediated metabolism. This disruption is evidenced with elevated concentrations of metabolites that play important roles in the modulation of redox homeostasis and inflammatory responses. Thus, this research sought to determine the impacts of the lipid extract derived from the Nannochloropsis oceanica microalgae on phospholipid metabolic processes in keratinocytes subjected to UVB exposure. UVB-irradiated keratinocytes were treated with the microalgae extract. Subsequently, analyses were performed on cell lysates to ascertain the levels of phospholipid/free fatty acids (GC-FID), lipid peroxidation byproducts (GC-MS), and endocannabinoids/eicosanoids (LC-MS), as well as to measure the enzymatic activities linked with phospholipid metabolism, receptor expression, and total antioxidant status (spectrophotometric methods). The extract from N. oceanica microalgae, by diminishing the activities of enzymes involved in the synthesis of endocannabinoids and eicosanoids (PLA2/COX1/2/LOX), augmented the concentrations of anti-inflammatory and antioxidant polyunsaturated fatty acids (PUFAs), namely DHA and EPA. These concentrations are typically diminished due to UVB irradiation. As a consequence, there was a marked reduction in the levels of pro-inflammatory arachidonic acid (AA) and associated pro-inflammatory eicosanoids and endocannabinoids, as well as the expression of CB1/TRPV1 receptors. The microalgal extract also mitigated the increase in lipid peroxidation byproducts, specifically MDA in non-irradiated samples and 10-F4t-NeuroP in both control and post-UVB exposure. These findings indicate that the lipid extract derived from N. oceanica, by mitigating the deleterious impacts of UVB radiation on keratinocyte phospholipids, assumed a pivotal role in reinstating intracellular metabolic equilibrium.


Assuntos
Antioxidantes , Microalgas , Antioxidantes/farmacologia , Endocanabinoides/metabolismo , Queratinócitos/metabolismo , Fosfolipídeos/metabolismo , Raios Ultravioleta/efeitos adversos
11.
Int J Mol Sci ; 23(4)2022 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-35216253

RESUMO

In recent years, several studies have demonstrated that polyunsaturated fatty acids have strong immunomodulatory properties, altering several functions of macrophages. In the present work, we sought to provide a multi-omic approach combining the analysis of the lipidome, the proteome, and the metabolome of RAW 264.7 macrophages supplemented with phospholipids containing omega-3 (PC 18:0/22:6; ω3-PC) or omega-6 (PC 18:0/20:4; ω6-PC) fatty acids, alone and in the presence of lipopolysaccharide (LPS). Supplementation of macrophages with ω3 and ω6 phospholipids plus LPS produced a significant reprogramming of the proteome of macrophages and amplified the immune response; it also promoted the expression of anti-inflammatory proteins (e.g., pleckstrin). Supplementation with the ω3-PC and ω6-PC induced significant changes in the lipidome, with a marked increase in lipid species linked to the inflammatory response, attributed to several pro-inflammatory signalling pathways (e.g., LPCs) but also to the pro-resolving effect of inflammation (e.g., PIs). Finally, the metabolomic analysis demonstrated that supplementation with ω3-PC and ω6-PC induced the expression of several metabolites with a pronounced inflammatory and anti-inflammatory effect (e.g., succinate). Overall, our data show that supplementation of macrophages with ω3-PC and ω6-PC effectively modulates the lipidome, proteome, and metabolome of these immune cells, affecting several metabolic pathways involved in the immune response that are triggered by inflammation.


Assuntos
Ácidos Graxos Ômega-3/metabolismo , Ácidos Graxos Ômega-6/metabolismo , Fatores Imunológicos/metabolismo , Lipídeos/fisiologia , Macrófagos/metabolismo , Fosfolipídeos/metabolismo , Proteínas/metabolismo , Animais , Imunidade/fisiologia , Inflamação/metabolismo , Lipidômica/métodos , Metaboloma/fisiologia , Camundongos , Proteoma/metabolismo , Células RAW 264.7 , Transdução de Sinais/fisiologia
12.
Int J Mol Sci ; 23(21)2022 Oct 27.
Artigo em Inglês | MEDLINE | ID: mdl-36361811

RESUMO

Modulation of lipid metabolism is a well-established cancer hallmark, and SCD1 has been recognized as a key enzyme in promoting cancer cell growth, including in glioblastoma (GBM), the deadliest brain tumor and a paradigm of cancer resistance. The central goal of this work was to identify, by MS, the phospholipidome alterations resulting from the silencing of SCD1 in human GBM cells, in order to implement an innovative therapy to fight GBM cell resistance. With this purpose, RNAi technology was employed, and low serum-containing medium was used to mimic nutrient deficiency conditions, at which SCD1 is overexpressed. Besides the expected increase in the saturated to unsaturated fatty acid ratio in SCD1 silenced-GBM cells, a striking increase in polyunsaturated chains, particularly in phosphatidylethanolamine and cardiolipin species, was noticed and tentatively correlated with an increase in autophagy (evidenced by the increase in LC3BII/I ratio). The contribution of autophagy to mitigate the impact of SCD1 silencing on GBM cell viability and growth, whose modest inhibition could be correlated with the maintenance of energetically associated mitochondria, was evidenced by using autophagy inhibitors. In conclusion, SCD1 silencing could constitute an important tool to halt GBM resistance to the available treatments, especially when coupled with a mitochondria disrupter chemotherapeutic.


Assuntos
Glioblastoma , Estearoil-CoA Dessaturase , Humanos , Estearoil-CoA Dessaturase/metabolismo , Fosfolipídeos , Glioblastoma/genética , Autofagia/genética , Sobrevivência Celular/genética
13.
Int J Mol Sci ; 23(14)2022 Jul 08.
Artigo em Inglês | MEDLINE | ID: mdl-35886909

RESUMO

Prostate cancer (PCa) is one of the most lethal diseases in men, which justifies the search for new diagnostic tools. The aim of the present study was to gain new insights into the progression of prostate carcinogenesis by analyzing the urine proteome. To this end, urine from healthy animals and animals with prostate adenocarcinoma was analyzed at two time points: 27 and 54 weeks. After 54 weeks, the incidence of pre-neoplastic and neoplastic lesions in the PCa animals was 100%. GeLC-MS/MS and subsequent bioinformatics analyses revealed several proteins involved in prostate carcinogenesis. Increased levels of retinol-binding protein 4 and decreased levels of cadherin-2 appear to be characteristic of early stages of the disease, whereas increased levels of enolase-1 and T-kininogen 2 and decreased levels of isocitrate dehydrogenase 2 describe more advanced stages. With increasing age, urinary levels of clusterin and corticosteroid-binding globulin increased and neprilysin levels decreased, all of which appear to play a role in prostate hyperplasia or carcinogenesis. The present exploratory analysis can be considered as a starting point for studies targeting specific human urine proteins for early detection of age-related maladaptive changes in the prostate that may lead to cancer.


Assuntos
Próstata , Neoplasias da Próstata , Animais , Carcinogênese/patologia , Modelos Animais de Doenças , Masculino , Próstata/patologia , Neoplasias da Próstata/metabolismo , Neoplasias da Próstata/urina , Proteoma/química , Espectrometria de Massas em Tandem
14.
J Proteome Res ; 20(5): 2651-2661, 2021 05 07.
Artigo em Inglês | MEDLINE | ID: mdl-33819046

RESUMO

Phenylketonuria (PKU) is a disease of the catabolism of phenylalanine (Phe), caused by an impaired function of the enzyme phenylalanine hydroxylase. Therapeutics is based on the restriction of Phe intake, which mostly requires a modification of the diet. Dietary restrictions can lead to imbalances in specific nutrients, including lipids. In the present study, the plasma phospholipidome of PKU and healthy children (CT) was analyzed by hydrophilic interaction liquid chromatography-tandem mass spectrometry and gas chromatography-mass spectrometry. Using this approach, 187 lipid species belonging to nine different phospholipid classes and three ceramides were identified. Principal component analysis of the lipid species data set showed a distinction between PKU and CT groups. Univariate analysis revealed that 146 species of phospholipids were significantly different between both groups. Lipid species showing significant variation included phosphatidylcholines, containing polyunsaturated fatty acids (PUFA), which were more abundant in PKU. The high level of PUFA-containing lipid species in children with PKU may be related to a diet supplemented with PUFA. This study was the first report comparing the plasma polar lipidome of PKU and healthy children, highlighting that the phospholipidome of PKU children is significantly altered compared to CT. However, further studies with larger cohorts are needed to clarify whether these changes are specific to phenylketonuric children.


Assuntos
Fenilcetonúrias , Criança , Dieta , Suplementos Nutricionais , Ácidos Graxos Insaturados , Humanos , Fenilalanina , Fenilcetonúrias/diagnóstico
15.
Hum Mol Genet ; 28(21): 3664-3679, 2019 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-31518391

RESUMO

A great deal of evidence revealing that lipid metabolism is drastically altered during tumorigenesis has been accumulated. In this work, glucosylceramide synthase (GCS) was targeted, using RNA interference technology (siRNAs), in U87 and DBTRG human glioblastoma (GBM) cells, as in both cell types GCS showed to be overexpressed with respect to normal human astrocytes. The efficacy of a combined therapy to tackle GBM, allying GCS silencing to the new generation chemotherapeutics sunitinib and axitinib, or to the alkylating drugs etoposide and temozolomide, is evaluated here for the first time. With this purpose, studies addressing GBM cell viability and proliferation, cell cycle and apoptosis were performed, which revealed that combination of GCS silencing with axitinib treatment represents a promising therapeutic approach. The reduction of cell viability induced by this combined therapy is proposed to be mediated by excessive production of reactive oxygen species. This work, identifying GCS as a key molecular target to increase GBM susceptibility to a new generation chemotherapeutic, opens windows to the development of innovative strategies to halt GBM recurrence after surgical resection.


Assuntos
Axitinibe/farmacologia , Glioblastoma/genética , Glucosiltransferases/antagonistas & inibidores , Glucosiltransferases/genética , Inibidores de Proteínas Quinases/farmacologia , Interferência de RNA , Apoptose/efeitos dos fármacos , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Glioblastoma/tratamento farmacológico , Glioblastoma/metabolismo , Glioblastoma/fisiopatologia , Glucosiltransferases/metabolismo , Humanos , Proteínas Tirosina Quinases/antagonistas & inibidores , Proteínas Tirosina Quinases/genética , Proteínas Tirosina Quinases/metabolismo
16.
Arch Biochem Biophys ; 697: 108672, 2021 01 15.
Artigo em Inglês | MEDLINE | ID: mdl-33189653

RESUMO

Multiple sclerosis is a neurodegenerative disease causing disability in young adults. Alterations in metabolism and lipid profile have been associated with this disease. Several studies have reported changes in the metabolism of arachidonic acid and the profile of fatty acids, ceramides, phospholipids and lipid peroxidation products. Nevertheless, the understanding of the modulation of circulating lipids at the molecular level in multiple sclerosis remains unclear. In the present study, we sought to assess the existence of a distinctive lipid signature of multiple sclerosis using an untargeted lipidomics approach. It also aimed to assess the differences in lipid profile between disease status (relapse and remission). For this, we used hydrophilic interaction liquid chromatography coupled with mass spectrometry for phospholipidomic profiling of serum samples from patients with multiple sclerosis. Our results demonstrated that multiple sclerosis has a phospholipidomic signature different from that of healthy controls, especially the PE, PC, LPE, ether-linked PE and ether-linked PC species. Plasmalogen PC and PE species, which are natural endogenous antioxidants, as well as PC and PE polyunsaturated fatty acid esterified species showed significantly lower levels in patients with multiple sclerosis and patients in both remission and relapse of multiple sclerosis. Our results show for the first time that the serum phospholipidome of multiple sclerosis is significantly different from that of healthy controls and that few phospholipids, with the lowest p-value, such as PC(34:3), PC(36:6), PE(40:10) and PC(38:1) may be suitable as biomarkers for clinical applications in multiple sclerosis.


Assuntos
Lipidômica , Esclerose Múltipla/sangue , Fosfolipídeos/sangue , Adulto , Biomarcadores/sangue , Biomarcadores/metabolismo , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Esclerose Múltipla/metabolismo , Fosfolipídeos/metabolismo
17.
Mar Drugs ; 19(7)2021 Jun 23.
Artigo em Inglês | MEDLINE | ID: mdl-34201621

RESUMO

The demand for sustainable and environmentally friendly food sources and food ingredients is increasing, and microalgae are promoted as a sustainable source of essential and bioactive lipids, with high levels of omega-3 fatty acids (ω-3 FA), comparable to those of fish. However, most FA screening studies on algae are scattered or use different methodologies, preventing a true comparison of its content between microalgae. In this work, we used gas-chromatography mass-spectrometry (GC-MS) to characterize the FA profile of seven different commercial microalgae with biotechnological applications (Chlorella vulgaris, Chlorococcum amblystomatis, Scenedesmus obliquus, Tetraselmis chui, Phaeodactylum tricornutum, Spirulina sp., and Nannochloropsis oceanica). Screening for antioxidant activity was also performed to understand the relationship between FA profile and bioactivity. Microalgae exhibited specific FA profiles with a different composition, namely in the ω-3 FA profile, but with species of the same phylum showing similar tendencies. The different lipid extracts showed similar antioxidant activities, but with a low activity of the extracts of Nannochloropsis oceanica. Overall, this study provides a direct comparison of FA profiles between microalgae species, supporting the role of these species as alternative, sustainable, and healthy sources of essential lipids.


Assuntos
Antioxidantes/farmacologia , Ácidos Graxos Ômega-3/química , Microalgas/química , Animais , Organismos Aquáticos , Compostos de Bifenilo , Tecnologia de Alimentos , Cromatografia Gasosa-Espectrometria de Massas , Humanos , Picratos
18.
Mar Drugs ; 19(8)2021 Jul 26.
Artigo em Inglês | MEDLINE | ID: mdl-34436254

RESUMO

Grateloupia turuturu Yamada, 1941, is a red seaweed widely used for food in Japan and Korea which was recorded on the Atlantic Coast of Europe about twenty years ago. This seaweed presents eicosapentaenoic acid (EPA) and other polyunsaturated fatty acids (PUFAs) in its lipid fraction, a feature that sparked the interest on its potential applications. In seaweeds, PUFAs are mostly esterified to polar lipids, emerging as healthy phytochemicals. However, to date, these biomolecules are still unknown for G. turuturu. The present work aimed to identify the polar lipid profile of G. turuturu, using modern lipidomics approaches based on high performance liquid chromatography coupled to high resolution mass spectrometry (LC-MS) and gas chromatography coupled to mass spectrometry (GC-MS). The health benefits of polar lipids were identified by health lipid indices and the assessment of antioxidant and anti-inflammatory activities. The polar lipids profile identified from G. turuturu included 205 lipid species distributed over glycolipids, phospholipids, betaine lipids and phosphosphingolipids, which featured a high number of lipid species with EPA and PUFAs. The nutritional value of G. turuturu has been shown by its protein content, fatty acyl composition and health lipid indices, thus confirming G. turuturu as an alternative source of protein and lipids. Some of the lipid species assigned were associated to biological activity, as polar lipid extracts showed antioxidant activity evidenced by free radical scavenging potential for the 2,2'-azino-bis-3-ethyl benzothiazoline-6-sulfonic acid (ABTS●+) radical (IC50 ca. 130.4 µg mL-1) and for the 2,2-diphenyl-1-picrylhydrazyl (DPPH●) radical (IC25 ca. 129.1 µg mL-1) and anti-inflammatory activity by inhibition of the COX-2 enzyme (IC50 ca. 33 µg mL-1). Both antioxidant and anti-inflammatory activities were detected using a low concentration of extracts. This integrative approach contributes to increase the knowledge of G. turuturu as a species capable of providing nutrients and bioactive molecules with potential applications in the nutraceutical, pharmaceutical and cosmeceutical industries.


Assuntos
Antioxidantes/farmacologia , Extratos Vegetais/farmacologia , Alga Marinha , Compostos de Bifenilo , Cromatografia Líquida de Alta Pressão , Cromatografia Líquida , Ácidos Graxos Insaturados/farmacologia , Humanos , Lipidômica , Espectrometria de Massas , Fosfolipídeos/farmacologia , Picratos , Relação Estrutura-Atividade
19.
Mar Drugs ; 19(11)2021 Oct 21.
Artigo em Inglês | MEDLINE | ID: mdl-34822464

RESUMO

Nannochloropsis oceanica can accumulate lipids and is a good source of polar lipids, which are emerging as new value-added compounds with high commercial value for the food, nutraceutical, and pharmaceutical industries. Some applications may limit the extraction solvents, such as food applications that require safe food-grade solvents, such as ethanol. However, the effect of using ethanol as an extraction solvent on the quality of the extracted polar lipidome, compared to other more traditional methods, is not yet well established. In this study, the polar lipid profile of N. oceanica extracts was obtained using different solvents, including chloroform/methanol (CM), dichloromethane/methanol (DM), dichloromethane/ethanol (DE), and ethanol (E), and evaluated by modern lipidomic methods using LC-MS/MS. Ultrasonic bath (E + USB)- and ultrasonic probe (E + USP)-assisted methodologies were implemented to increase the lipid extraction yields using ethanol. The polar lipid signature and antioxidant activity of DM, E + USB, and E + USP resemble conventional CM, demonstrating a similar extraction efficiency, while the DE and ethanol extracts were significantly different. Our results showed the impact of different extraction solvents in the polar lipid composition of the final extracts and demonstrated the feasibility of E + USB and E + USP as safe and food-grade sources of polar lipids, with the potential for high-added-value biotechnological applications.


Assuntos
Lipídeos/química , Microalgas , Animais , Biotecnologia , Cromatografia Líquida de Alta Pressão , Alimento Funcional , Humanos , Lipidômica
20.
Mar Drugs ; 20(1)2021 Dec 22.
Artigo em Inglês | MEDLINE | ID: mdl-35049863

RESUMO

Microalgae are known as a producer of proteins and lipids, but also of valuable compounds for human health benefits (e.g., polyunsaturated fatty acids (PUFAs); minerals, vitamins, or other compounds). The overall objective of this research was to prospect novel products, such as nutraceuticals from microalgae, for application in human health, particularly for metabolic diseases. Chlorella vulgaris and Chlorococcum amblystomatis were grown autotrophically, and C. vulgaris was additionally grown heterotrophically. Microalgae biomass was extracted using organic solvents (dichloromethane, ethanol, ethanol with ultrasound-assisted extraction). Those extracts were evaluated for their bioactivities, toxicity, and metabolite profile. Some of the extracts reduced the neutral lipid content using the zebrafish larvae fat metabolism assay, reduced lipid accumulation in fatty-acid-overloaded HepG2 liver cells, or decreased the LPS-induced inflammation reaction in RAW264.7 macrophages. Toxicity was not observed in the MTT assay in vitro or by the appearance of lethality or malformations in zebrafish larvae in vivo. Differences in metabolite profiles of microalgae extracts obtained by UPLC-LC-MS/MS and GNPS analyses revealed unique compounds in the active extracts, whose majority did not have a match in mass spectrometry databases and could be potentially novel compounds. In conclusion, microalgae extracts demonstrated anti-obesity, anti-steatosis, and anti-inflammatory activities and could be valuable resources for developing future nutraceuticals. In particular, the ultrasound-assisted ethanolic extract of the heterotrophic C. vulgaris significantly enhanced the anti-obesity activity and demonstrated that the alteration of culture conditions is a valuable approach to increase the production of high-value compounds.


Assuntos
Anti-Inflamatórios/farmacologia , Fármacos Antiobesidade/farmacologia , Chlorella vulgaris , Microalgas , Animais , Anti-Inflamatórios/química , Fármacos Antiobesidade/química , Organismos Aquáticos , Células Hep G2/efeitos dos fármacos , Humanos , Larva/efeitos dos fármacos , Camundongos , Células RAW 264.7/efeitos dos fármacos , Peixe-Zebra
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA