RESUMO
The Zika virus (ZIKV) can be vertically transmitted, causing congenital Zika syndrome (CZS) in fetuses. ZIKV infection in early gestational trimesters increases the chances of developing CZS. This syndrome involves several pathologies with a complex diagnosis. In this work, we aim to identify biological processes and molecular pathways related to CZS and propose a series of putative protein and metabolite biomarkers for CZS prognosis in early pregnancy trimesters. We analyzed serum samples of healthy pregnant women and ZIKV-infected pregnant women bearing nonmicrocephalic and microcephalic fetuses. A total of 1090 proteins and 512 metabolites were identified by bottom-up proteomics and untargeted metabolomics, respectively. Univariate and multivariate statistical approaches were applied to find CZS differentially abundant proteins (DAP) and metabolites (DAM). Enrichment analysis (i.e., biological processes and molecular pathways) of the DAP and the DAM allowed us to identify the ECM organization and proteoglycans, amino acid metabolism, and arachidonic acid metabolism as CZS signatures. Five proteins and four metabolites were selected as CZS biomarker candidates. Serum multiomics analysis led us to propose nine putative biomarkers for CZS prognosis with high sensitivity and specificity.
Assuntos
Complicações Infecciosas na Gravidez , Infecção por Zika virus , Zika virus , Gravidez , Feminino , Humanos , Infecção por Zika virus/diagnóstico , Zika virus/genética , Complicações Infecciosas na Gravidez/diagnóstico , Complicações Infecciosas na Gravidez/patologia , Multiômica , BiomarcadoresRESUMO
In this study, we conducted an in-depth analysis to characterize potential Acanthamoeba castellanii (Ac) proteins capable of recognizing fungal ß-1,3-glucans. Ac specifically anchors curdlan or laminarin, indicating the presence of surface ß-1,3-glucan-binding molecules. Using optical tweezers, strong adhesion of laminarin- or curdlan-coated beads to Ac was observed, highlighting their adhesive properties compared to controls (characteristic time τ of 46.9 and 43.9 s, respectively). Furthermore, Histoplasma capsulatum (Hc) G217B, possessing a ß-1,3-glucan outer layer, showed significant adhesion to Ac compared to a Hc G186 strain with an α-1,3-glucan outer layer (τ of 5.3 s vs τ 83.6 s). The addition of soluble ß-1,3-glucan substantially inhibited this adhesion, indicating the involvement of ß-1,3-glucan recognition. Biotinylated ß-1,3-glucan-binding proteins from Ac exhibited higher binding to Hc G217B, suggesting distinct recognition mechanisms for laminarin and curdlan, akin to macrophages. These observations hinted at the ß-1,3-glucan recognition pathway's role in fungal entrance and survival within phagocytes, supported by decreased fungal viability upon laminarin or curdlan addition in both phagocytes. Proteomic analysis identified several Ac proteins capable of binding ß-1,3-glucans, including those with lectin/glucanase superfamily domains, carbohydrate-binding domains, and glycosyl transferase and glycosyl hydrolase domains. Notably, some identified proteins were overexpressed upon curdlan/laminarin challenge and also demonstrated high affinity to ß-1,3-glucans. These findings underscore the complexity of binding via ß-1,3-glucan and suggest the existence of alternative fungal recognition pathways in Ac.IMPORTANCEAcanthamoeba castellanii (Ac) and macrophages both exhibit the remarkable ability to phagocytose various extracellular microorganisms in their respective environments. While substantial knowledge exists on this phenomenon for macrophages, the understanding of Ac's phagocytic mechanisms remains elusive. Recently, our group identified mannose-binding receptors on the surface of Ac that exhibit the capacity to bind/recognize fungi. However, the process was not entirely inhibited by soluble mannose, suggesting the possibility of other interactions. Herein, we describe the mechanism of ß-1,3-glucan binding by A. castellanii and its role in fungal phagocytosis and survival within trophozoites, also using macrophages as a model for comparison, as they possess a well-established mechanism involving the Dectin-1 receptor for ß-1,3-glucan recognition. These shed light on a potential parallel evolution of pathways involved in the recognition of fungal surface polysaccharides.
Assuntos
Acanthamoeba castellanii , Amoeba , beta-Glucanas , Amoeba/metabolismo , Manose/metabolismo , Proteômica , beta-Glucanas/metabolismo , Glucanos/metabolismo , Histoplasma/metabolismoRESUMO
AIMS: Phorbol esters (PE) are toxic diterpenoids accumulated in physic nut (Jatropha curcas L.) seed tissues. Their biosynthetic pathway remains unknown, and the participation of roots in this process may be possible. Thus, we set out to study the deposition pattern of PE and other terpenoids in roots and leaves of genotypes with detected (DPE) and not detected (NPE) phorbol esters based on previous studies. OUTLINE OF DATA RESOURCES: We analyzed physic nut leaf and root organic extracts using LC-HRMS. By an untargeted metabolomics approach, it was possible to annotate 496 and 146 metabolites in the positive and negative electrospray ionization modes, respectively. KEY RESULTS: PE were detected only in samples of the DPE genotype. Remarkably, PE were found in both leaves and roots, making this study the first report of PE in J. curcas roots. Furthermore, untargeted metabolomic analysis revealed that diterpenoids and apocarotenoids are preferentially accumulated in the DPE genotype in comparison with NPE, which may be linked to the divergence between the genotypes concerning PE biosynthesis, since sesquiterpenoids showed greater abundance in the NPE. UTILITY OF THE RESOURCE: The LC-HRMS files, publicly available in the MassIVE database (identifier MSV000092920), are valuable as they expand our understanding of PE biosynthesis, which can assist in the development of molecular strategies to reduce PE levels in toxic genotypes, making possible the food use of the seedcake, as well as its potential to contain high-quality spectral information about several other metabolites that may possess biological activity.
Assuntos
Jatropha , Jatropha/genética , Jatropha/metabolismo , Ésteres de Forbol/análise , Ésteres de Forbol/metabolismo , Folhas de Planta/metabolismo , Sementes/genéticaRESUMO
Zika virus (ZIKV) infection can be transmitted vertically, leading to the development of congenital Zika syndrome (CZS) in infected fetuses. During the early stages of gestation, the fetuses face an elevated risk of developing CZS. However, it is important to note that late-stage infections can also result in adverse outcomes. The differences between CZS and non-CZS phenotypes remain poorly understood. In this review, we provide a summary of the molecular mechanisms underlying ZIKV infection and placental and blood-brain barriers trespassing. Also, we have included molecular alterations that elucidate the progression of CZS by proteomics and metabolomics studies. Lastly, this review comprises investigations into body fluid samples, which have aided to identify potential biomarkers associated with CZS.
Assuntos
Complicações Infecciosas na Gravidez , Infecção por Zika virus , Zika virus , Gravidez , Feminino , Humanos , Infecção por Zika virus/diagnóstico , Zika virus/genética , Placenta , Proteômica , BiomarcadoresRESUMO
Açaí palm (Euterpe oleracea Mart.) seeds are a rich source of mannans, which can be used to generate bioethanol or be converted to high-value D-mannose, in addition to being a source of polyphenols with beneficial health properties. Here, we present a quantitative proteome dataset of açaí seeds at four stages of development (S1, S2, S3, and S4 stages), in which 2465 high confidence proteins were identified and 524 of them show statistically different abundance profiles during development. Several enzymes involved in the biosynthesis of nucleotide-sugars were quantified, especially those dedicated to the formation of GDP-mannose, which showed an increase in abundance between stages S1 and S3. Our data suggest that linear mannans found abundantly in endosperm cell walls are initially deposited as galactomannans, and during development lose the galactosyl groups. Two isoforms of alpha-galactosidase enzymes showed significantly increased abundances in the S3 and S4 stages. Additionally, we quantified the enzymes participating in the central pathway of flavonoid biosynthesis responsible for the formation of catechin and epicatechin, which are subunits of procyanidins, the main class of polyphenols in the açaí seeds. These proteins showed the same pattern of deposition, in which higher abundances were seen in the S1 and S2 stages.
Assuntos
Euterpe , Mananas , Antioxidantes , Proteômica , Sementes/química , Polifenóis/análise , Extratos VegetaisRESUMO
During fetal development, cardiomyocytes switch from glycolysis to oxidative metabolism to sustain the energy requirements of functional cells. State-of-the-art cardiac differentiation protocols yield phenotypically immature cardiomyocytes, and common methods to improve metabolic maturation require multistep protocols to induce maturation only after cardiac specification is completed. Here, we describe a maturation method using ventricle-derived decellularized extracellular matrix (dECM) that promoted early-stage metabolic maturation of cardiomyocytes differentiated from human induced pluripotent stem cells (hiPSCs). Chemically and architecturally preserved particles (45-500 µm) of pig ventricular dECM were added to hiPSCs at the start of differentiation. At the end of our maturation protocol (day 15 of cardiac differentiation), we observed an intimate interaction between cardiomyocytes and dECM particles without impairment of cardiac differentiation efficiency (approx. 70% of cTNT+). Compared with control cells (those cultured without pig dECM), 15-day-old dECM-treated cardiomyocytes demonstrated increased expression of markers related to cardiac metabolic maturation, MAPK1, FOXO1, and FOXO3, and a switch from ITGA6 (the immature integrin isoform) to ITGA3 and ITGA7 (those present in adult cardiomyocytes). Electrical parameters and responsiveness to dobutamine also improved in pig ventricular dECM-treated cells. Extending the culture time to 30 days, we observed a switch from glucose to fatty acid metabolism, indicated by decreased glucose uptake and increased fatty acid consumption in cells cultured with dECM. Together, these data suggest that dECM contains endogenous cues that enable metabolic maturation of hiPSC-CMs at early stages of cardiac differentiation.
Assuntos
Células-Tronco Pluripotentes Induzidas , Miócitos Cardíacos , Adulto , Humanos , Animais , Suínos , Matriz Extracelular Descelularizada , Pós/metabolismo , Diferenciação Celular , Ácidos Graxos/metabolismo , Matriz Extracelular/metabolismoRESUMO
BACKGROUND: Although older adults are at a high risk of severe or critical Covid-19, there are many cases of unvaccinated centenarians who had a silent infection or recovered from mild or moderate Covid-19. We studied three Brazilian supercentenarians, older than 110 years, who survived Covid-19 in 2020 before being vaccinated. RESULTS: Despite their advanced age, humoral immune response analysis showed that these individuals displayed robust levels of IgG and neutralizing antibodies (NAbs) against SARS-CoV-2. Enrichment of plasma proteins and metabolites related to innate immune response and host defense was also observed. None presented autoantibodies (auto-Abs) to type I interferon (IFN). Furthermore, these supercentenarians do not carry rare variants in genes underlying the known inborn errors of immunity, including particular inborn errors of type I IFN. CONCLUSION: These observations suggest that their Covid-19 resilience might be a combination of their genetic background and their innate and adaptive immunity.
RESUMO
The phorbol esters in the seeds of Jatropha curcas are a major hindrance to the full exploitation of the potential of this oil crop as a source of raw material for the production of biodiesel. Here, various quantitative proteomic strategies are used to establish the proteomes of roots, leaves, and endosperm of two genotypes of J. curcas with contrasting levels of phorbol esters in the seeds. In total 4532, 1775, and 503 proteins are identified respectively in roots, leaves, and endosperm, comprising 5068 unique proteins; of this total, 185 are differentially abundant in roots, 72 in leaves, and 20 in the endosperm. The biosynthetic pathways for flavonoids and terpenoids are well represented in roots, including the complete set of proteins for the mevalonate and non-mevalonate/Deoxyxylulose 5-Phosphate pathways, and proteins involved in the branches which lead to the synthesis tricyclic diterpenoids and gibberellins. Also, casbene synthase which catalyzes the first committed step in the biosynthesis of tigliane-type diterpenes is identified in roots of both genotypes, but not in leaves and endosperm. This dataset will be a valuable resource to explore the biochemical basis of the low toxicity of Jatropha genotypes with low concentration of phorbol esters in the seeds.
Assuntos
Regulação da Expressão Gênica de Plantas , Jatropha/metabolismo , Ésteres de Forbol/metabolismo , Proteínas de Plantas/metabolismo , Proteoma/análise , Proteoma/metabolismo , Sementes/metabolismo , Genótipo , Jatropha/crescimento & desenvolvimento , Sementes/crescimento & desenvolvimentoRESUMO
Quantitative proteome analysis of four developmental stages of pericarp tissues of the açaí berry (Euterpe oleracea Mart.) was performed by the isobaric labeling of peptides with iTRAQ 4-plex, hydrophilic interaction liquid chromatography pre-fractionation of labeled peptides, and high-performance mass spectrometry analysis. This analysis resulted in the identification of 4286 proteins, of which 476 presented differential abundance between the stages. The differential abundance of these proteins was seen to be coordinated with the metabolic demands during cell division, lignification, and cell expansion at developmental stages 1 and 2 as well as phenolic acid accumulation and metabolic changes in the fruit maturation at developmental stages 3 and 4. The distinct accumulation of anthocyanins observed in the pericarp at developmental stage 4 was correlated with the increase in abundance of some key biosynthetic enzymes, such as leucoanthocyanidin dioxygenase, anthocyanidin O-3-glycosyltransferase, and UDP-glycosyltransferase. Here, evidence is also provided for the presence in the açaí berry of secondary metabolites not previously described in açaí, such as pterostilbene, matairesinol, and furaneol. Together, these results will pave the way for studies aimed at the genetic improvement of the nutritional properties of this important fruit crop.
Assuntos
Euterpe/crescimento & desenvolvimento , Euterpe/metabolismo , Frutas/crescimento & desenvolvimento , Proteínas de Plantas/metabolismo , Aminoácidos/biossíntese , Aminoácidos/metabolismo , Antocianinas/análise , Antocianinas/metabolismo , Metabolismo dos Carboidratos , Enzimas/metabolismo , Frutas/metabolismo , Espectrometria de Massas , Proteínas de Plantas/análise , Proteômica/métodos , Metabolismo SecundárioRESUMO
In the advanced stages, malignant melanoma (MM) has a very poor prognosis. Due to tremendous efforts in cancer research over the last 10 years, and the introduction of novel therapies such as targeted therapies and immunomodulators, the rather dark horizon of the median survival has dramatically changed from under 1 year to several years. With the advent of proteomics, deep-mining studies can reach low-abundant expression levels. The complexity of the proteome, however, still surpasses the dynamic range capabilities of current analytical techniques. Consequently, many predicted protein products with potential biological functions have not yet been verified in experimental proteomic data. This category of 'missing proteins' (MP) is comprised of all proteins that have been predicted but are currently unverified. As part of the initiative launched in 2016 in the USA, the European Cancer Moonshot Center has performed numerous deep proteomics analyses on samples from MM patients. In this study, nine MPs were clearly identified by mass spectrometry in MM metastases. Some MPs significantly correlated with proteins that possess identical PFAM structural domains; and other MPs were significantly associated with cancer-related proteins. This is the first study to our knowledge, where unknown and novel proteins have been annotated in metastatic melanoma tumour tissue.
Assuntos
Melanoma/genética , Metástase Neoplásica/genética , Proteômica/métodos , Adulto , Biomarcadores Tumorais/genética , Feminino , Genoma Humano/genética , Humanos , Masculino , Pessoa de Meia-Idade , Anotação de Sequência Molecular/métodos , Anotação de Sequência Molecular/tendências , Prognóstico , Proteoma/genética , Proteoma/metabolismo , Neoplasias Cutâneas/genética , Melanoma Maligno CutâneoRESUMO
RNA editing is a posttranscriptional process that changes nucleotide sequences, among which cytosine-to-uracil by a deamination reaction can revert non-neutral codon mutations. Pentatricopeptide repeat (PPR) proteins comprise a family of RNA-binding proteins, with members acting as editing trans-factors that recognize specific RNA cis-elements and perform the deamination reaction. PPR proteins are classified into P and PLS subfamilies. In this work, we have designed RNA biotinylated probes based in soybean plastid RNA editing sites to perform trans-factor specific protein isolation. Soybean cis-elements from these three different RNA probes show differences in respect to other species. Pulldown samples were submitted to mass spectrometry for protein identification. Among detected proteins, five corresponded to PPR proteins. More than one PPR protein, with distinct functional domains, was pulled down with each one of the RNA probes. Comparison of the soybean PPR proteins to Arabidopsis allowed identification of the closest homologous. Differential gene expression analysis demonstrated that the PPR locus Glyma.02G174500 doubled its expression under salt stress, which correlates with the increase of its potential rps14 editing. The present study represents the first identification of RNA editing trans-factors in soybean. Data also indicated that potential multiple trans-factors should interact with RNA cis-elements to perform the RNA editing.
RESUMO
Pollen grains are tiny structures vital for sexual reproduction and consequently seed and fruit production in angiosperms, and a source of many allergenic components responsible for deleterious implications for health worldwide. Current pollen research is mainly focused on unraveling the molecular mechanisms underlying the pollen germination and tube formation passing from the quiescent stage. In this context, an in-depth proteome analysis of the pollens from Ricinus communis at three different stages-that is, mature, hydrated, and in vitro germinated-is performed. This analysis results in the identification of 1950 proteins, including 1773, 1313, and 858, from mature, hydrated, and germinated pollens, respectively. Based on label-free quantification, 164 proteins are found to be significantly differentially abundant from mature to hydrated pollens, 40 proteins from hydrated to germinated, and 57 proteins from mature to germinated pollens, respectively. Most of the differentially abundant proteins are related to protein, carbohydrate, and energy metabolism and signaling. Besides other functional classes, a reasonable number of the proteins are predicted to be allergenic proteins, previously undiscovered. This is the first in-deep proteome analysis of the R. communis pollens and, to the best of our knowledge, one of the most complete proteome dataset identified from the pollens of any plant species, thus providing a reference proteome for researchers interested in pollen biology.
Assuntos
Proteínas de Plantas/análise , Pólen/química , Ricinus/química , Germinação , Proteínas de Plantas/metabolismo , Pólen/crescimento & desenvolvimento , Pólen/metabolismo , Proteômica , Ricinus/crescimento & desenvolvimento , Ricinus/metabolismo , Água/metabolismoRESUMO
The histology-based Gleason score (GS) of prostate cancer (PCa) tissue biopsy is the most accurate predictor of disease aggressiveness and an important measure to guide treatment strategies and patient management. The variability associated with PCa tumor sampling and the subjective determination of the GS are challenges that limit accurate diagnostication and prognostication. Thus, novel molecular signatures are needed to distinguish between indolent and aggressive forms of PCa for better patient management and outcomes. Herein, label-free LC-MS/MS proteomics is used to profile the proteome of 50 PCa tissues spanning five grade groups (n = 10 per group) relative to tissues from individuals with benign prostatic hyperplasia (BPH). Over 2000 proteins are identified albeit at different levels between and within the patient groups, revealing biological processes associated with specific grades. A panel of 11 prostate-derived proteins including IGKV3D-20, RNASET2, TACC2, ANXA7, LMOD1, PRCP, GYG1, NDUFV1, H1FX, APOBEC3C, and CTSZ display the potential to stratify patients from low and high PCa grade groups. Parallel reaction monitoring of the same sample cohort validate the differential expression of LMOD1, GYG1, IGKV3D-20, and RNASET2. The four proteins associated with low and high PCa grades reported here warrant further exploration as candidate biomarkers for PCa aggressiveness.
Assuntos
Hiperplasia Prostática/metabolismo , Hiperplasia Prostática/patologia , Neoplasias da Próstata/metabolismo , Neoplasias da Próstata/patologia , Proteoma/metabolismo , Progressão da Doença , Humanos , Masculino , Gradação de Tumores , ProteômicaRESUMO
Schizophrenia is a chronic disease characterized by the impairment of mental functions with a marked social dysfunction. A quantitative proteomic approach using iTRAQ labeling and SRM, applied to the characterization of mitochondria (MIT), crude nuclear fraction (NUC), and cytoplasm (CYT), can allow the observation of dynamic changes in cell compartments providing valuable insights concerning schizophrenia physiopathology. Mass spectrometry analyses of the orbitofrontal cortex from 12 schizophrenia patients and 8 healthy controls identified 655 protein groups in the MIT fraction, 1500 in NUC, and 1591 in CYT. We found 166 groups of proteins dysregulated among all enriched cellular fractions. Through the quantitative proteomic analysis, we detect as the main biological pathways those related to calcium and glutamate imbalance, cell signaling disruption of CREB activation, axon guidance, and proteins involved in the activation of NF-kB signaling along with the increase of complement protein C3. Based on our data analysis, we suggest the activation of NF-kB as a possible pathway that links the deregulation of glutamate, calcium, apoptosis, and the activation of the immune system in schizophrenia patients. All MS data are available in the ProteomeXchange Repository under the identifier PXD015356 and PXD014350.
Assuntos
Córtex Pré-Frontal/citologia , Córtex Pré-Frontal/metabolismo , Esquizofrenia/metabolismo , Adulto , Idoso , Idoso de 80 Anos ou mais , Estudos de Casos e Controles , Núcleo Celular/metabolismo , Citoplasma/metabolismo , Feminino , Humanos , Masculino , Espectrometria de Massas , Proteínas de Membrana/metabolismo , Pessoa de Meia-Idade , Mitocôndrias/metabolismo , Proteínas Mitocondriais/metabolismo , NF-kappa B/metabolismo , Córtex Pré-Frontal/química , Proteômica/métodos , Canal de Ânion 1 Dependente de Voltagem/metabolismoRESUMO
BACKGROUND: Organoid cultivation in suspension culture requires agitation at low shear stress to allow for nutrient diffusion, which preserves tissue structure. Multiplex systems for organoid cultivation have been proposed, but whether they meet similar shear stress parameters as the regularly used spinner flask and its correlation with the successful generation of brain organoids has not been determined. RESULTS: Here we used computational fluid dynamics (CFD) to simulate two multiplex culture conditions: steering plates on an orbital shaker and the use of a previously described bioreactor. The bioreactor had low speed and high shear stress regions that may affect cell aggregate growth, depending on volume, whereas the computed variables of the steering plates were closer to those of the spinning flask. CONCLUSION: Our protocol improves the initial steps of the standard brain organoid formation, and the produced organoids displayed regionalized brain structures, including retinal pigmented cells. Overall, we conclude that suspension culture on orbital steering plates is a cost-effective practical alternative to previously described platforms for the cultivation of brain organoids for research and multiplex testing.
Assuntos
Encéfalo/citologia , Encéfalo/crescimento & desenvolvimento , Técnicas de Cultura de Órgãos/métodos , Organoides/crescimento & desenvolvimento , Estresse Fisiológico/fisiologia , Linhagem Celular , Humanos , Hidrodinâmica , Organoides/citologia , Resistência ao Cisalhamento/fisiologiaRESUMO
BACKGROUND: Alzheimer's disease (AD) is the most common neurodegenerative disorder. Depositions of amyloid ß peptide (Aß) and tau protein are among the major pathological hallmarks of AD. Aß and tau burden follows predictable spatial patterns during the progression of AD. Nevertheless, it remains obscure why certain brain regions are more vulnerable than others; to investigate this and dysregulated pathways during AD progression, a mass spectrometry-based proteomics study was performed. METHODS: In total 103 tissue samples from regions early (entorhinal and parahippocampal cortices - medial temporal lobe (MTL)) and late affected (temporal and frontal cortices - neocortex) by tau pathology were subjected to label-free quantitative proteomics analysis. RESULTS: Considering dysregulated proteins during AD progression, the majority (625 out of 737 proteins) was region specific, while some proteins were shared between regions (101 proteins altered in two areas and 11 proteins altered in three areas). Analogously, many dysregulated pathways during disease progression were exclusive to certain regions, but a few pathways altered in two or more areas. Changes in protein expression indicate that synapse loss occurred in all analyzed regions, while translation dysregulation was preponderant in entorhinal, parahippocampal and frontal cortices. Oxidative phosphorylation impairment was prominent in MTL. Differential proteomic analysis of brain areas in health state (controls) showed higher metabolism and increased expression of AD-related proteins in the MTL compared to the neocortex. In addition, several proteins that differentiate brain regions in control tissue were dysregulated in AD. CONCLUSIONS: This work provides the comparison of proteomic changes in brain regions affected by tau pathology at different stages of AD. Although we identified commonly regulated proteins and pathways during disease advancement, we found that the dysregulated processes are predominantly region specific. In addition, a distinct proteomic signature was found between MTL and neocortex in healthy subjects that might be related to AD vulnerability. These findings highlight the need for investigating AD's cascade of events throughout the whole brain and studies spanning more brain areas are required to better understand AD etiology and region vulnerability to disease.
Assuntos
Doença de Alzheimer/metabolismo , Encéfalo/metabolismo , Proteoma , Proteínas tau/metabolismo , Idoso , Idoso de 80 Anos ou mais , Doença de Alzheimer/patologia , Encéfalo/patologia , Progressão da Doença , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Fosforilação , ProteômicaRESUMO
INTRODUCTION: Hutchinson-Gilford Progeria Syndrome (HGPS) is an extremely rare genetic disorder. HGPS children present a high incidence of cardiovascular complications along with altered metabolic processes and an accelerated aging process. No metabolic biomarker is known and the mechanisms underlying premature aging are not fully understood. OBJECTIVES: The present work aims to evaluate the metabolic alterations in HGPS using high resolution mass spectrometry. METHODS: The present study analyzed plasma from six HGPS patients of both sexes (7.7 ± 1.4 years old; mean ± SD) and eight controls (8.6 ± 2.3 years old) by LC-MS/MS in high-resolution non-targeted metabolomics (Q-Exactive Plus). Targeted metabolomics was used to validate some of the metabolites identified by the non-targeted method in a triple quadrupole (TSQ-Quantiva). RESULTS: We found several endogenous metabolites with statistical differences between control and HGPS children. Multivariate statistical analysis showed a clear separation between groups. Potential novel metabolic biomarkers were identified using the multivariate area under ROC curve (AUROC) based analysis, showing an AUC value higher than 0.80 using only two metabolites, and tending to 1.00 when increasing the number of metabolites in the AUROC model. Taken together, changed metabolic pathways involve sphingolipids, amino acids, and oxidation of fatty acids, among others. CONCLUSION: Our data show significant alterations in cellular energy use and availability, in signal transduction, and lipid metabolites, adding new insights on metabolic alterations associated with premature aging and suggesting novel putative biomarkers.
Assuntos
Metaboloma , Metabolômica/métodos , Progéria/metabolismo , Senilidade Prematura , Aminoácidos/metabolismo , Área Sob a Curva , Biomarcadores/sangue , Estudos de Casos e Controles , Criança , Cromatografia Líquida de Alta Pressão , Análise Discriminante , Ácidos Graxos/química , Ácidos Graxos/metabolismo , Humanos , Análise dos Mínimos Quadrados , Análise de Componente Principal , Progéria/patologia , Curva ROC , Esfingolipídeos/metabolismoRESUMO
An important goal of the Human Proteome Organization (HUPO) Chromosome-centric Human Proteome Project (C-HPP) is to correctly define the number of canonical proteins encoded by their cognate open reading frames on each chromosome in the human genome. When identified with high confidence of protein evidence (PE), such proteins are termed PE1 proteins in the online database resource, neXtProt. However, proteins that have not been identified unequivocally at the protein level but that have other evidence suggestive of their existence (PE2-4) are termed missing proteins (MPs). The number of MPs has been reduced from 5511 in 2012 to 2186 in 2018 (neXtProt 2018-01-17 release). Although the annotation of the human proteome has made significant progress, the "parts list" alone does not inform function. Indeed, 1937 proteins representing â¼10% of the human proteome have no function either annotated from experimental characterization or predicted by homology to other proteins. Specifically, these 1937 "dark proteins" of the so-called dark proteome are composed of 1260 functionally uncharacterized but identified PE1 proteins, designated as uPE1, plus 677 MPs from categories PE2-PE4, which also have no known or predicted function and are termed uMPs. At the HUPO-2017 Annual Meeting, the C-HPP officially adopted the uPE1 pilot initiative, with 14 participating international teams later committing to demonstrate the feasibility of the functional characterization of large numbers of dark proteins (CP), starting first with 50 uPE1 proteins, in a stepwise chromosome-centric organizational manner. The second aim of the feasibility phase to characterize protein (CP) functions of 50 uPE1 proteins, termed the neXt-CP50 initiative, is to utilize a variety of approaches and workflows according to individual team expertise, interest, and resources so as to enable the C-HPP to recommend experimentally proven workflows to the proteome community within 3 years. The results from this pilot will not only be the cornerstone of a larger characterization initiative but also enhance understanding of the human proteome and integrated cellular networks for the discovery of new mechanisms of pathology, mechanistically informative biomarkers, and rational drug targets.
Assuntos
Cromossomos Humanos/genética , Bases de Dados de Proteínas , Proteoma/análise , Genoma Humano , Humanos , Espectrometria de Massas , Anotação de Sequência Molecular , Fases de Leitura Aberta , Projetos Piloto , Proteoma/genéticaRESUMO
MOTIVATION: Around 75% of all mass spectra remain unidentified by widely adopted proteomic strategies. We present DiagnoProt, an integrated computational environment that can efficiently cluster millions of spectra and use machine learning to shortlist high-quality unidentified mass spectra that are discriminative of different biological conditions. RESULTS: We exemplify the use of DiagnoProt by shortlisting 4366 high-quality unidentified tandem mass spectra that are discriminative of different types of the Aspergillus fungus. AVAILABILITY AND IMPLEMENTATION: DiagnoProt, a demonstration video and a user tutorial are available at http://patternlabforproteomics.org/diagnoprot . CONTACT: andrerfsilva@gmail.com or paulo@pcarvalho.com. SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.
Assuntos
Aprendizado de Máquina , Proteômica/métodos , Análise de Sequência de Proteína/métodos , Software , Espectrometria de Massas em Tandem/métodos , Aspergillus/metabolismo , Proteínas Fúngicas/análiseRESUMO
Cell line-based proteomics studies are susceptible to intrinsic biological variation that contributes to increasing false positive claims; most of the methods that follow these changes offer a limited understanding of the biological system. We applied a quantitative proteomic strategy (iTRAQ) to detect intrinsic protein variation across SH-SY5Y cell culture replicates. More than 95% of the quantified proteins presented a coefficient of variation (CV)â¯<â¯20% between biological replicates and the variable proteins, which included cytoskeleton, cytoplasmic and housekeeping proteins, are widely reported in proteomic studies. We recommend this approach as an additional quality control before starting any proteomic experiment.