Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Scand J Med Sci Sports ; 34(1): e14555, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38268075

RESUMO

An imbalanced adaptation of muscle strength and tendon stiffness in response to training may increase tendon strain (i.e., the mechanical demand on the tendon) and consequently tendon injury risk. This study investigated if personalized tendon loading inducing tendon strain within the effective range for adaptation (4.5%-6.5%) can reduce musculotendinous imbalances in male adolescent handball athletes (15-16 years). At four measurement time points during a competitive season, we assessed knee extensor muscle strength and patellar tendon mechanical properties using dynamometry and ultrasonography and estimated the tendon's structural integrity with a peak spatial frequency (PSF) analysis of proximal tendon ultrasound scans. A control group (n = 13) followed their usual training routine, an intervention group (n = 13) integrated tendon exercises into their training (3x/week for ~31 weeks) with a personalized intensity corresponding to an average of ~6.2% tendon strain. We found a significant time by group interaction (p < 0.005) for knee extensor muscle strength and normalized patellar tendon stiffness with significant increases over time only in the intervention group (p < 0.001). There were no group differences or time-dependent changes in patellar tendon strain during maximum voluntary contractions or PSF. At the individual level, the intervention group demonstrated lower fluctuations of maximum patellar tendon strain during the season (p = 0.005) and a descriptively lower frequency of athletes with high-level tendon strain (≥9%). The findings suggest that the personalized tendon loading program reduced muscle-tendon imbalances in male adolescent athletes, which may provide new opportunities for tendon injury prevention.


Assuntos
Ligamento Patelar , Traumatismos dos Tendões , Adolescente , Masculino , Humanos , Tendões , Músculo Esquelético/diagnóstico por imagem , Ligamento Patelar/diagnóstico por imagem , Atletas
2.
Eur J Appl Physiol ; 2024 Jun 06.
Artigo em Inglês | MEDLINE | ID: mdl-38842575

RESUMO

PURPOSE: Imbalances of muscle strength and tendon stiffness can increase the operating strain of tendons and risk of injury. Here, we used a new approach to identify muscle-tendon imbalances and personalize exercise prescription based on tendon strain during maximum voluntary contractions (εmax) to mitigate musculotendinous imbalances in male adult volleyball athletes. METHODS: Four times over a season, we measured knee extensor strength and patellar tendon mechanical properties using dynamometry and ultrasonography. Tendon micromorphology was evaluated through an ultrasound peak spatial frequency (PSF) analysis. While a control group (n = 12) continued their regular training, an intervention group (n = 10) performed exercises (3 × /week) with personalized loads to elicit tendon strains that promote tendon adaptation (i.e., 4.5-6.5%). RESULTS: Based on a linear mixed model, εmax increased significantly in the control group over the 9 months of observation (pCon = 0.010), while there was no systematic change in the intervention group (pInt = 0.575). The model residuals of εmax, as a measure of imbalances in muscle-tendon adaptation, demonstrated a significant reduction over time exclusively in the intervention group (pInt = 0.007). While knee extensor muscle strength increased in both groups by ~ 8% (pCon < 0.001, pInt = 0.064), only the intervention group showed a trend toward increased normalized tendon stiffness (pCon = 0.824, pInt = 0.051). PSF values did not change significantly in either group (p > 0.05). CONCLUSION: These results suggest that personalized exercise prescription can reduce muscle-tendon imbalances in athletes and could provide new opportunities for tendon injury prevention.

3.
Sci Rep ; 14(1): 6875, 2024 03 22.
Artigo em Inglês | MEDLINE | ID: mdl-38519507

RESUMO

Human tendons adapt to mechanical loading, yet there is little information on the effect of the temporal coordination of loading and recovery or the dose-response relationship. For this reason, we assigned adult men to either a control or intervention group. In the intervention group, the two legs were randomly assigned to one of five high-intensity Achilles tendon (AT) loading protocols (i.e., 90% maximum voluntary contraction and approximately 4.5 to 6.5% tendon strain) that were systematically modified in terms of loading frequency (i.e., sessions per week) and overall loading volume (i.e., total time under loading). Before, at mid-term (8 weeks) and after completion of the 16 weeks intervention, AT mechanical properties were determined using a combination of inverse dynamics and ultrasonography. The cross-sectional area (CSA) and length of the free AT were measured using magnetic resonance imaging pre- and post-intervention. The data analysis with a linear mixed model showed significant increases in muscle strength, rest length-normalized AT stiffness, and CSA of the free AT in the intervention group (p < 0.05), yet with no marked differences between protocols. No systematic effects were found considering the temporal coordination of loading and overall loading volume. In all protocols, the major changes in normalized AT stiffness occurred within the first 8 weeks and were mostly due to material rather than morphological changes. Our findings suggest that-in the range of 2.5-5 sessions per week and 180-300 s total high strain loading-the temporal coordination of loading and recovery and overall loading volume is rather secondary for tendon adaptation.


Assuntos
Tendão do Calcâneo , Adulto , Humanos , Masculino , Tendão do Calcâneo/fisiologia , Fenômenos Biomecânicos , Contração Isométrica/fisiologia , Imageamento por Ressonância Magnética , Força Muscular , Ultrassonografia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA