Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
J Chem Phys ; 158(23)2023 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-37341294

RESUMO

Intensities of 14 lines in the sixth overtone (7-0) band of carbon monoxide (12C16O) are measured in the visible range between 14 300 and 14 500 cm-1 using a frequency-stabilized cavity ring-down spectrometer. This is the first observation of such a high and weak overtone spectrum of the CO molecule. A theoretical model is constructed and tested based on the use of a high accuracy ab initio dipole moment curve and a semi-empirical potential energy curve. Accurate studies of high overtone transitions provide a challenge to both experiment and theory as the lines are very weak: below 2 × 10-29 cm molecule-1 at 296 K. Agreement between theory and experiment within the experimental uncertainty of a few percent is obtained. However, this agreement is only achieved after issues with the stability of the Davidson correction to the multi-reference configuration interaction calculations are addressed.

2.
J Chem Phys ; 156(8): 084301, 2022 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-35232214

RESUMO

We present the results of direct measurements of the line mixing parameters for two pairs of overlapping transitions at the band head of the oxygen B band. Measurements were performed with the frequency-stabilized cavity ring-down spectrometer assisted by an optical frequency comb. The recorded spectra were analyzed with line profiles comprising speed dependence, Dicke narrowing, and line mixing. Incorporation of the line mixing into the model eliminated previous discrepancies for pressure shift and their speed dependence coefficients. First-order line mixing was determined directly from the line shape fitting at relatively low pressure (0.04 atm) together with other line shape parameters and compared with that calculated by Sung et al. [J. Quant. Spectrosc. Radiat. Transfer 235, 232-243 (2019)].

3.
Opt Express ; 26(5): 5644-5654, 2018 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-29529766

RESUMO

The response of an optical cavity to incomplete extinction of nearly resonant incident light was experimentally examined. Measurements were performed using a Pound-Drever-Hall-locked frequency-stabilized cavity ring-down spectrometer (CRDS) that allowed the laser frequency detuning from the cavity resonance center to be controlled at Hz-level resolution. It is shown that an insufficient laser light extinction ratio combined with a phase shift and frequency detuning may lead to non-exponential cavity pumping and decay signals. The experimental results can be explained with a simple analytical model. The non-exponential decay can lead to a systematic shift as high as 0.5% in the ring-down time constants, dependent on the laser frequency detuning from the cavity mode center and on the extinction ratio. This can lead to appreciable systematic errors in the absorption coefficients determined with the CRDS technique.

4.
Spectrochim Acta A Mol Biomol Spectrosc ; 312: 124041, 2024 May 05.
Artigo em Inglês | MEDLINE | ID: mdl-38368819

RESUMO

We present the results of the spectral line-shape study of the first measurement of the extremely weak (7-0) band of the 12C16O molecule. Measurements were done with a highly sensitive cavity ring-down spectrometer. Collisional narrowing, analyzed in terms of speed-dependent effects, was observed for the first time for transitions with line intensities below 2⋅10-29 cm/molecule at 296 K. We provide a full set of line-shape parameters of the speed-dependent and regular Voigt profile analysis for 14 transitions from P and R branches. Experimental verification of a strong vibrational dependence of the pressure shifting described by the Hartmann model (Hartmann, 2009) is extended up to the sixth overtone highly sensitive to the model parameter.

5.
Spectrochim Acta A Mol Biomol Spectrosc ; 303: 123185, 2023 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-37544214

RESUMO

The air-broadened lines from the oxygen B band were measured for the first time in controlled laboratory conditions with a high signal-to-noise ratio using frequency-stabilized cavity ring-down spectroscopy (FS-CRDS) referenced to the optical frequency comb. Spectra measured at various pressures and temperatures were analyzed with an advanced line-shape model, considering the speed-dependence of collisional broadening and shift, and the effect of velocity-changing collisions. The temperature dependence of collisional broadening and shift is determined, whereas no significant temperature dependence of speed-dependent parameters and Dicke narrowing was observed. In addition, we have demonstrated that reasonable estimation of temperature dependence for pressure broadening is possible even from measurements done in single temperature where the speed dependence of pressure broadening was determined. New spectroscopic data improve the accuracy of the air-broadened oxygen B-band spectra description by an order of magnitude.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA