Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Assunto da revista
País de afiliação
Intervalo de ano de publicação
1.
Proc Biol Sci ; 288(1957): 20210727, 2021 08 25.
Artigo em Inglês | MEDLINE | ID: mdl-34428970

RESUMO

A formidable challenge for global change biologists is to predict how natural populations will respond to the emergence of conditions not observed at present, termed novel climates. Popular approaches to predict population vulnerability are based on the expected degree of novelty relative to the amplitude of historical climate fluctuations experienced by a population. Here, we argue that predictions focused on amplitude may be inaccurate because they ignore the predictability of environmental fluctuations in driving patterns of evolution and responses to climate change. To address this disconnect, we review major findings of evolutionary theory demonstrating the conditions under which phenotypic plasticity is likely to evolve in natural populations, and how plasticity decreases population vulnerability to novel environments. We outline key criteria that experimental studies should aim for to effectively test theoretical predictions, while controlling for the degree of climate novelty. We show that such targeted tests of evolutionary theory are rare, with marine systems being overall underrepresented in this venture despite exhibiting unique opportunities to test theory. We conclude that with more robust experimental designs that manipulate both the amplitude and predictability of fluctuations, while controlling for the degree of novelty, we may better predict population vulnerability to climate change.


Assuntos
Adaptação Fisiológica , Evolução Biológica , Mudança Climática
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA