Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
Assunto da revista
País de afiliação
Intervalo de ano de publicação
1.
J Neurosci ; 39(36): 7132-7154, 2019 09 04.
Artigo em Inglês | MEDLINE | ID: mdl-31350259

RESUMO

Ca2+-activated K+ channels (BK and SK) are ubiquitous in synaptic circuits, but their role in network adaptation and sensory perception remains largely unknown. Using electrophysiological and behavioral assays and biophysical modeling, we discover how visual information transfer in mutants lacking the BK channel (dSlo- ), SK channel (dSK- ), or both (dSK- ;; dSlo- ) is shaped in the female fruit fly (Drosophila melanogaster) R1-R6 photoreceptor-LMC circuits (R-LMC-R system) through synaptic feedforward-feedback interactions and reduced R1-R6 Shaker and Shab K+ conductances. This homeostatic compensation is specific for each mutant, leading to distinctive adaptive dynamics. We show how these dynamics inescapably increase the energy cost of information and promote the mutants' distorted motion perception, determining the true price and limits of chronic homeostatic compensation in an in vivo genetic animal model. These results reveal why Ca2+-activated K+ channels reduce network excitability (energetics), improving neural adaptability for transmitting and perceiving sensory information.SIGNIFICANCE STATEMENT In this study, we directly link in vivo and ex vivo experiments with detailed stochastically operating biophysical models to extract new mechanistic knowledge of how Drosophila photoreceptor-interneuron-photoreceptor (R-LMC-R) circuitry homeostatically retains its information sampling and transmission capacity against chronic perturbations in its ion-channel composition, and what is the cost of this compensation and its impact on optomotor behavior. We anticipate that this novel approach will provide a useful template to other model organisms and computational neuroscience, in general, in dissecting fundamental mechanisms of homeostatic compensation and deepening our understanding of how biological neural networks work.


Assuntos
Retroalimentação Fisiológica , Canais de Potássio Ativados por Cálcio de Condutância Alta/metabolismo , Células Fotorreceptoras de Invertebrados/metabolismo , Canais de Potássio Ativados por Cálcio de Condutância Baixa/metabolismo , Potenciais Sinápticos , Percepção Visual , Animais , Proteínas de Drosophila/metabolismo , Drosophila melanogaster , Feminino , Interneurônios/metabolismo , Interneurônios/fisiologia , Modelos Neurológicos , Células Fotorreceptoras de Invertebrados/fisiologia , Canais de Potássio Shab/metabolismo , Superfamília Shaker de Canais de Potássio/metabolismo , Vias Visuais/metabolismo , Vias Visuais/fisiologia
2.
Mol Cancer Ther ; 19(2): 575-589, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-31672763

RESUMO

Glioblastoma is resistant to conventional treatments and has dismal prognosis. Despite promising in vitro data, molecular targeted agents have failed to improve outcomes in patients, indicating that conventional two-dimensional (2D) in vitro models of GBM do not recapitulate the clinical scenario. Responses of primary glioblastoma stem-like cells (GSC) to radiation in combination with EGFR, VEGF, and Akt inhibition were investigated in conventional 2D cultures and a three-dimensional (3D) in vitro model of GBM that recapitulates key GBM clinical features. VEGF deprivation had no effect on radiation responses of 2D GSCs, but enhanced radiosensitivity of GSC cultures in 3D. The opposite effects were observed for EGFR inhibition. Detailed analysis of VEGF and EGF signaling demonstrated a radioprotective role of Akt that correlates with VEGF in 3D and with EGFR in 2D. In all cases, positive correlations were observed between increased radiosensitivity, markers of unrepaired DNA damage and persistent phospho-DNA-PK nuclear foci. Conversely, increased numbers of Rad51 foci were observed in radioresistant populations, indicating a novel role for VEGF/Akt signaling in influencing radiosensitivity by regulating the balance between nonhomologous end-joining and homologous recombination-mediated DNA repair. Differential activation of tyrosine kinase receptors in 2D and 3D models of GBM explains the well documented discrepancy between preclinical and clinical effects of EGFR inhibitors. Data obtained from our 3D model identify novel determinants and mechanisms of DNA repair and radiosensitivity in GBM, and confirm Akt as a promising therapeutic target in this cancer of unmet need.


Assuntos
Neoplasias Encefálicas/radioterapia , Glioblastoma/radioterapia , Proteínas Proto-Oncogênicas c-akt/genética , Tolerância a Radiação/efeitos dos fármacos , Fator A de Crescimento do Endotélio Vascular/genética , Animais , Linhagem Celular Tumoral , Feminino , Humanos , Camundongos , Camundongos Nus , Transdução de Sinais
3.
Elife ; 62017 09 05.
Artigo em Inglês | MEDLINE | ID: mdl-28870284

RESUMO

Small fly eyes should not see fine image details. Because flies exhibit saccadic visual behaviors and their compound eyes have relatively few ommatidia (sampling points), their photoreceptors would be expected to generate blurry and coarse retinal images of the world. Here we demonstrate that Drosophila see the world far better than predicted from the classic theories. By using electrophysiological, optical and behavioral assays, we found that R1-R6 photoreceptors' encoding capacity in time is maximized to fast high-contrast bursts, which resemble their light input during saccadic behaviors. Whilst over space, R1-R6s resolve moving objects at saccadic speeds beyond the predicted motion-blur-limit. Our results show how refractory phototransduction and rapid photomechanical photoreceptor contractions jointly sharpen retinal images of moving objects in space-time, enabling hyperacute vision, and explain how such microsaccadic information sampling exceeds the compound eyes' optical limits. These discoveries elucidate how acuity depends upon photoreceptor function and eye movements.


Assuntos
Drosophila melanogaster/fisiologia , Movimentos Oculares/fisiologia , Estimulação Luminosa , Visão Ocular/fisiologia , Acuidade Visual/fisiologia , Animais , Simulação por Computador , Drosophila melanogaster/ultraestrutura , Fixação Ocular/fisiologia , Modelos Neurológicos , Movimento , Fótons , Células Fotorreceptoras de Invertebrados/metabolismo , Células Fotorreceptoras de Invertebrados/ultraestrutura , Retina/fisiologia
4.
Front Neural Circuits ; 10: 19, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27047343

RESUMO

Synaptic feedback from interneurons to photoreceptors can help to optimize visual information flow by balancing its allocation on retinal pathways under changing light conditions. But little is known about how this critical network operation is regulated dynamically. Here, we investigate this question by comparing signaling properties and performance of wild-type Drosophila R1-R6 photoreceptors to those of the hdc (JK910) mutant, which lacks the neurotransmitter histamine and therefore cannot transmit information to interneurons. Recordings show that hdc (JK910) photoreceptors sample similar amounts of information from naturalistic stimulation to wild-type photoreceptors, but this information is packaged in smaller responses, especially under bright illumination. Analyses reveal how these altered dynamics primarily resulted from network overload that affected hdc (JK910) photoreceptors in two ways. First, the missing inhibitory histamine input to interneurons almost certainly depolarized them irrevocably, which in turn increased their excitatory feedback to hdc (JK910) R1-R6s. This tonic excitation depolarized the photoreceptors to artificially high potentials, reducing their operational range. Second, rescuing histamine input to interneurons in hdc (JK910) mutant also restored their normal phasic feedback modulation to R1-R6s, causing photoreceptor output to accentuate dynamic intensity differences at bright illumination, similar to the wild-type. These results provide mechanistic explanations of how synaptic feedback connections optimize information packaging in photoreceptor output and novel insight into the operation and design of dynamic network regulation of sensory neurons.


Assuntos
Proteínas de Drosophila/genética , Histamina/deficiência , Mutação/genética , Células Fotorreceptoras de Invertebrados/fisiologia , Vias Visuais/fisiologia , Animais , Animais Geneticamente Modificados , Cegueira/genética , Cegueira/patologia , Adaptação à Escuridão/genética , Modelos Animais de Doenças , Drosophila , Estimulação Elétrica , Eletrorretinografia , Feminino , Análise de Fourier , Potenciais da Membrana , Microscopia Eletrônica de Transmissão , Técnicas de Patch-Clamp , Estimulação Luminosa , Células Fotorreceptoras de Invertebrados/ultraestrutura
5.
Science ; 336(6083): 925-31, 2012 May 18.
Artigo em Inglês | MEDLINE | ID: mdl-22605779

RESUMO

Color and motion information are thought to be channeled through separate neural pathways, but it remains unclear whether and how these pathways interact to improve motion perception. In insects, such as Drosophila, it has long been believed that motion information is fed exclusively by one spectral class of photoreceptor, so-called R1 to R6 cells; whereas R7 and R8 photoreceptors, which exist in multiple spectral classes, subserve color vision. Here, we report that R7 and R8 also contribute to the motion pathway. By using electrophysiological, optical, and behavioral assays, we found that R7/R8 information converge with and shape the motion pathway output, explaining flies' broadly tuned optomotor behavior by its composite responses. Our results demonstrate that inputs from photoreceptors of different spectral sensitivities improve motion discrimination, increasing robustness of perception.


Assuntos
Drosophila melanogaster/fisiologia , Percepção de Movimento , Células Fotorreceptoras de Invertebrados/fisiologia , Animais , Visão de Cores , Proteínas de Drosophila , Drosophila melanogaster/genética , Voo Animal , Junções Comunicantes/fisiologia , Genes de Insetos , Luz , Modelos Neurológicos , Mutação , Neurônios/fisiologia , Opsinas/metabolismo , Lobo Óptico de Animais não Mamíferos/citologia , Lobo Óptico de Animais não Mamíferos/fisiologia , Técnicas de Patch-Clamp , Células Fotorreceptoras de Invertebrados/ultraestrutura , Transgenes , Raios Ultravioleta , Vias Visuais
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA