Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Ecology ; 99(8): 1716-1723, 2018 08.
Artigo em Inglês | MEDLINE | ID: mdl-29897623

RESUMO

In recent years, it has been argued that the effect of predator fear exacts a greater demographic toll on prey populations than the direct killing of prey. However, efforts to quantify the effects of fear have primarily relied on experiments that replace predators with predator cues. Interpretation of these experiments must consider two important caveats: (1) the magnitude of experimenter-induced predator cues may not be realistically comparable to those of the prey's natural sensory environment, and (2) given functional predators are removed from the treatments, the fear effect is measured in the absence of any consumptive effects, a situation which never occurs in nature. We contend that demographic consequences of fear in natural populations may have been overestimated because the intensity of predator cues applied by experimenters in the majority of studies has been unnaturally high, in some instances rarely occurring in nature without consumption. Furthermore, the removal of consumption from the treatments creates the potential situation that individual prey in poor condition (those most likely to contribute strongly to the observed fear effects via starvation or reduced reproductive output) may have been consumed by predators in nature prior to the expression of fear effects, thus confounding consumptive and fear effects. Here, we describe an alternative treatment design that does not utilize predator cues, and in so doing, better quantifies the demographic effect of fear on wild populations. This treatment substitutes the traditional cue experiment where consumptive effects are eliminated and fear is simulated with a design where fear is removed and consumptive effects are simulated through the experimental removal of prey. Comparison to a natural population would give a more robust estimate of the effect of fear in the presence of consumption on the demographic variable of interest. This approach represents a critical advance in quantifying the mechanistic pathways through which predation structures ecological communities. Discussing the merits of both treatments will motivate researchers to go beyond simply describing the existence of fear effects and focus on testing their true magnitude in wild populations and natural communities.


Assuntos
Cadeia Alimentar , Comportamento Predatório , Animais , Sinais (Psicologia) , Demografia , Medo
3.
Ecol Evol ; 10(21): 12147-12156, 2020 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-33209277

RESUMO

Extreme weather events (EWEs) are expected to increase in stochasticity, frequency, and intensity due to climate change. Documented effects of EWEs, such as droughts, hurricanes, and temperature extremes, range from shifting community stable states to species extirpations. To date, little attention has been paid to how populations resist and/or recover from EWEs through compensatory (behavioral, demographic, or physiological) mechanisms; limiting the capacity to predict species responses to future changes in EWEs. Here, we systematically reviewed the global variation in species' demographic responses, resistance to, and recovery from EWEs across weather types, species, and biogeographic regions. Through a literature review and meta-analysis, we tested the prediction that population abundance and probability of persistence will decrease in populations after an EWE and how compensation affects that probability. Across 524 species population responses to EWEs reviewed (27 articles), we noted large variation in responses, such that, on average, the effect of EWEs on population demographics was not negative as predicted. The majority of species populations (80.4%) demonstrated compensatory mechanisms during events to reduce their deleterious effects. However, for populations that were negatively impacted, the demographic consequences were severe. Nearly 20% of the populations monitored experienced declines of over 50% after an EWE, and 6.8% of populations were extirpated. Population declines were reflected in a reduction in survival. Further, resilience was not common, as 80.0% of populations that declined did not recover to before EWE levels while monitored. However, average monitoring time was only two years with over a quarter of studies tracking recovery for less than the study species generation time. We conclude that EWEs have positive and negative impacts on species demography, and this varies by taxa. Species population recovery over short-time intervals is rare, but long-term studies are required to accurately assess species resilience to current and future events.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA