Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 280
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 121(14): e2315586121, 2024 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-38498726

RESUMO

Heparins have been invaluable therapeutic anticoagulant polysaccharides for over a century, whether used as unfractionated heparin or as low molecular weight heparin (LMWH) derivatives. However, heparin production by extraction from animal tissues presents multiple challenges, including the risk of adulteration, contamination, prion and viral impurities, limited supply, insecure supply chain, and significant batch-to-batch variability. The use of animal-derived heparin also raises ethical and religious concerns, as well as carries the risk of transmitting zoonotic diseases. Chemoenzymatic synthesis of animal-free heparin products would offer several advantages, including reliable and scalable production processes, improved purity and consistency, and the ability to produce heparin polysaccharides with molecular weight, structural, and functional properties equivalent to those of the United States Pharmacopeia (USP) heparin, currently only sourced from porcine intestinal mucosa. We report a scalable process for the production of bioengineered heparin that is biologically and compositionally similar to USP heparin. This process relies on enzymes from the heparin biosynthetic pathway, immobilized on an inert support and requires a tailored N-sulfoheparosan with N-sulfo levels similar to those of porcine heparins. We also report the conversion of our bioengineered heparin into a LMWH that is biologically and compositionally similar to USP enoxaparin. Ultimately, we demonstrate major advances to a process to provide a potential clinical and sustainable alternative to porcine-derived heparin products.


Assuntos
Heparina de Baixo Peso Molecular , Heparina , Animais , Suínos , Heparina/metabolismo , Heparina de Baixo Peso Molecular/química , Anticoagulantes/química , Peso Molecular , Contaminação de Medicamentos
2.
Glycoconj J ; 41(2): 163-174, 2024 04.
Artigo em Inglês | MEDLINE | ID: mdl-38642280

RESUMO

The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has caused a worldwide COVID-19 pandemic, leading to 6.8 million deaths. Numerous variants have emerged since its outbreak, resulting in its significantly enhanced ability to spread among humans. As with many other viruses, SARS­CoV­2 utilizes heparan sulfate (HS) glycosaminoglycan (GAG) on the surface of host cells to facilitate viral attachment and initiate cellular entry through the ACE2 receptor. Therefore, interfering with virion-HS interactions represents a promising target to develop broad-spectrum antiviral therapeutics. Sulfated glycans derived from marine organisms have been proven to be exceptional reservoirs of naturally existing HS mimetics, which exhibit remarkable therapeutic properties encompassing antiviral/microbial, antitumor, anticoagulant, and anti-inflammatory activities. In the current study, the interactions between the receptor-binding domain (RBD) of S-protein of SARS-CoV-2 (both WT and XBB.1.5 variants) and heparin were applied to assess the inhibitory activity of 10 marine-sourced glycans including three sulfated fucans, three fucosylated chondroitin sulfates and two fucoidans derived from sea cucumbers, sea urchin and seaweed Saccharina japonica, respectively. The inhibitory activity of these marine derived sulfated glycans on the interactions between RBD of S-protein and heparin was evaluated using Surface Plasmon Resonance (SPR). The RBDs of S-proteins from both Omicrion XBB.1.5 and wild-type (WT) were found to bind to heparin, which is a highly sulfated form of HS. All the tested marine-sourced sulfated glycans exhibited strong inhibition of WT and XBB.1.5 S-protein binding to heparin. We believe the study on the molecular interactions between S-proteins and host cell glycosaminoglycans provides valuable insight for the development of marine-sourced, glycan-based inhibitors as potential anti-SARS-CoV-2 agents.


Assuntos
Heparina , Polissacarídeos , SARS-CoV-2 , Glicoproteína da Espícula de Coronavírus , SARS-CoV-2/efeitos dos fármacos , SARS-CoV-2/metabolismo , Heparina/farmacologia , Heparina/química , Heparina/metabolismo , Polissacarídeos/química , Polissacarídeos/farmacologia , Polissacarídeos/metabolismo , Humanos , Glicoproteína da Espícula de Coronavírus/metabolismo , Glicoproteína da Espícula de Coronavírus/química , Glicoproteína da Espícula de Coronavírus/genética , COVID-19/virologia , COVID-19/metabolismo , Ligação Proteica , Animais , Antivirais/farmacologia , Antivirais/química , Heparitina Sulfato/metabolismo , Heparitina Sulfato/química
3.
Biomacromolecules ; 2024 Oct 18.
Artigo em Inglês | MEDLINE | ID: mdl-39422524

RESUMO

This study explores the synthesis and application of artificial zymogens using protein-polymer hybrids to mimic the controlled enzyme activation observed in natural zymogens. Pro-trypsin (pro-TR) and pro-chymotrypsin (pro-CT) hybrids were engineered by modifying the surfaces of trypsin (TR) and chymotrypsin (CT) with cleavable peptide inhibitors utilizing surface-initiated atom transfer radical polymerization. These hybrids exhibited 70 and 90% reductions in catalytic efficiency for pro-TR and pro-CT, respectively, due to the inhibitory effect of the grafted peptide inhibitors. The activation of pro-TR by CT and pro-CT by TR resulted in 1.5- and 2.5-fold increases in enzymatic activity, respectively. Furthermore, the activated hybrids triggered an enzyme activation cascade, enabling amplification of activity through a dual pro-protease hybrid system. This study highlights the potential of artificial zymogens for therapeutic interventions and biodetection platforms by harnessing enzyme activation cascades for precise control of catalytic activity.

4.
Mar Drugs ; 22(5)2024 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-38786623

RESUMO

Mycoplasma pneumoniae, a notable pathogen behind respiratory infections, employs specialized proteins to adhere to the respiratory epithelium, an essential process for initiating infection. The role of glycosaminoglycans, especially heparan sulfate, is critical in facilitating pathogen-host interactions, presenting a strategic target for therapeutic intervention. In this study, we assembled a glycan library comprising heparin, its oligosaccharide derivatives, and a variety of marine-derived sulfated glycans to screen the potential inhibitors for the pathogen-host interactions. By using Surface Plasmon Resonance spectroscopy, we evaluated the library's efficacy in inhibiting the interaction between M. pneumoniae adhesion proteins and heparin. Our findings offer a promising avenue for developing novel therapeutic strategies against M. pneumoniae infections.


Assuntos
Heparina , Mycoplasma pneumoniae , Polissacarídeos , Animais , Adesinas Bacterianas/metabolismo , Adesinas Bacterianas/efeitos dos fármacos , Antibacterianos/farmacologia , Antibacterianos/química , Organismos Aquáticos , Aderência Bacteriana/efeitos dos fármacos , Heparina/farmacologia , Heparina/química , Interações Hospedeiro-Patógeno , Mycoplasma pneumoniae/efeitos dos fármacos , Pneumonia por Mycoplasma/tratamento farmacológico , Pneumonia por Mycoplasma/microbiologia , Polissacarídeos/farmacologia , Polissacarídeos/química , Sulfatos/química , Sulfatos/farmacologia
5.
Mar Drugs ; 21(5)2023 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-37233458

RESUMO

Sulfated glycans from marine organisms are excellent sources of naturally occurring glycosaminoglycan (GAG) mimetics that demonstrate therapeutic activities, such as antiviral/microbial infection, anticoagulant, anticancer, and anti-inflammation activities. Many viruses use the heparan sulfate (HS) GAG on the surface of host cells as co-receptors for attachment and initiating cell entry. Therefore, virion-HS interactions have been targeted to develop broad-spectrum antiviral therapeutics. Here we report the potential anti-monkeypox virus (MPXV) activities of eight defined marine sulfated glycans, three fucosylated chondroitin sulfates, and three sulfated fucans extracted from the sea cucumber species Isostichopus badionotus, Holothuria floridana, and Pentacta pygmaea, and the sea urchin Lytechinus variegatus, as well as two chemically desulfated derivatives. The inhibitions of these marine sulfated glycans on MPXV A29 and A35 protein-heparin interactions were evaluated using surface plasmon resonance (SPR). These results demonstrated that the viral surface proteins of MPXV A29 and A35 bound to heparin, which is a highly sulfated HS, and sulfated glycans from sea cucumbers showed strong inhibition of MPXV A29 and A35 interactions. The study of molecular interactions between viral proteins and host cell GAGs is important in developing therapeutics for the prevention and treatment of MPXV.


Assuntos
Glicosaminoglicanos , Pepinos-do-Mar , Animais , Glicosaminoglicanos/química , Ressonância de Plasmônio de Superfície , Sulfatos/farmacologia , Sulfatos/química , Heparitina Sulfato/farmacologia , Sulfatos de Condroitina , Heparina/farmacologia , Pepinos-do-Mar/química , Antivirais/farmacologia
6.
Biotechnol Bioeng ; 119(10): 2842-2856, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-35822281

RESUMO

Circadian rhythms are characterized as oscillations that fluctuate based on a 24 h cycle and are responsible for regulation of physiological functions. While the internal clock synchronizes gene expression using external cues like light, a similar synchronization can be induced in vitro by incubating the cells with an increased percentage of serum followed by its rapid removal. Previous studies have suggested that synchronization of HepG2 cell line induced the rhythmic expression of drug-metabolizing enzymes (DME) most specifically the cytochrome P450 enzymes. However, there is a lack of evidence demonstrating the influence of three-dimensional microenvironment on the rhythmicity of these genes. To understand this interplay, gene expression of the circadian machinery and CYP450s were compared using the model human hepatocarcinoma cell line, HepG2. Upon serum shock synchronization, gene and protein expression of core clock regulators was assessed and rhythmic expression of these genes was demonstrated. Further insight into the interrelations between various gene pairs was obtained using statistical analysis. Using RNA sequencing, an in-depth understanding of the widespread effects of circadian regulation on genes involved in metabolic processes in the liver was obtained. This study aids in the better understanding of chronopharmacokinetic events in humans using physiologically relevant 3D culture systems.


Assuntos
Ritmo Circadiano , Fígado , Ritmo Circadiano/genética , Sistema Enzimático do Citocromo P-450/genética , Sistema Enzimático do Citocromo P-450/metabolismo , Regulação da Expressão Gênica , Humanos , Fígado/metabolismo , Análise de Sequência de RNA
7.
Nature ; 531(7596): 647-50, 2016 Mar 31.
Artigo em Inglês | MEDLINE | ID: mdl-27007848

RESUMO

Targeted, temporally regulated neural modulation is invaluable in determining the physiological roles of specific neural populations or circuits. Here we describe a system for non-invasive, temporal activation or inhibition of neuronal activity in vivo and its use to study central nervous system control of glucose homeostasis and feeding in mice. We are able to induce neuronal activation remotely using radio waves or magnetic fields via Cre-dependent expression of a GFP-tagged ferritin fusion protein tethered to the cation-conducting transient receptor potential vanilloid 1 (TRPV1) by a camelid anti-GFP antibody (anti-GFP-TRPV1). Neuronal inhibition via the same stimuli is achieved by mutating the TRPV1 pore, rendering the channel chloride-permeable. These constructs were targeted to glucose-sensing neurons in the ventromedial hypothalamus in glucokinase-Cre mice, which express Cre in glucose-sensing neurons. Acute activation of glucose-sensing neurons in this region increases plasma glucose and glucagon, lowers insulin levels and stimulates feeding, while inhibition reduces blood glucose, raises insulin levels and suppresses feeding. These results suggest that pancreatic hormones function as an effector mechanism of central nervous system circuits controlling blood glucose and behaviour. The method we employ obviates the need for permanent implants and could potentially be applied to study other neural processes or used to regulate other, even dispersed, cell types.


Assuntos
Glicemia/metabolismo , Ingestão de Alimentos/fisiologia , Campos Magnéticos , Neurônios/fisiologia , Ondas de Rádio , Núcleo Hipotalâmico Ventromedial/citologia , Núcleo Hipotalâmico Ventromedial/fisiologia , Animais , Ferritinas/genética , Ferritinas/metabolismo , Glucagon/sangue , Glucoquinase/metabolismo , Homeostase , Hipoglicemia/metabolismo , Insulina/sangue , Integrases/metabolismo , Camundongos , Inibição Neural , Hormônios Pancreáticos/metabolismo , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/metabolismo , Canais de Cátion TRPV/genética , Canais de Cátion TRPV/metabolismo , Fatores de Tempo
8.
Molecules ; 27(18)2022 Sep 11.
Artigo em Inglês | MEDLINE | ID: mdl-36144634

RESUMO

Monkeypox virus (MPXV), a member of the Orthopoxvirus genus, has begun to spread into many countries worldwide. While the prevalence of monkeypox in Central and Western Africa is well-known, the recent rise in the number of cases spread through intimate personal contact, particularly in the United States, poses a grave international threat. Previous studies have shown that cell-surface heparan sulfate (HS) is important for vaccinia virus (VACV) infection, particularly the binding of VACV A27, which appears to mediate the binding of virus to cellular HS. Some other glycosaminoglycans (GAGs) also bind to proteins on Orthopoxviruses. In this study, by using surface plasmon resonance, we demonstrated that MPXV A29 protein (a homolog of VACV A27) binds to GAGs including heparin and chondroitin sulfate/dermatan sulfate. The negative charges on GAGs are important for GAG-MPXV A29 interaction. GAG analogs, pentosan polysulfate and mucopolysaccharide polysulfate, show strong inhibition of MPXV A29-heparin interaction. A detailed understanding on the molecular interactions involved in this disease should accelerate the development of therapeutics and drugs for the treatment of MPXV.


Assuntos
Sulfatos de Condroitina , Monkeypox virus , Dermatan Sulfato , Glicosaminoglicanos/metabolismo , Heparina/metabolismo , Heparitina Sulfato/metabolismo , Monkeypox virus/metabolismo , Poliéster Sulfúrico de Pentosana , Ressonância de Plasmônio de Superfície , Vaccinia virus
9.
Anal Chem ; 93(49): 16528-16534, 2021 12 14.
Artigo em Inglês | MEDLINE | ID: mdl-34865465

RESUMO

CRISPR-based detection of target DNA or RNA exploits a dual function, including target sequence-specific recognition followed by trans-cleavage activity of a collateral ssDNA linker between a fluorophore (F) and a quencher (Q), which amplifies a fluorescent signal upon cleavage. In this work, we have extended such dual functionality in a modified immunoassay format to detect a target protein, CXCL9, which is markedly elevated in the urine of kidney transplant recipients undergoing acute rejection episodes. To establish the "immuno-CRISPR" assay, we used anti-CXCL9 antibody-DNA barcode conjugates to target CXCL9 and amplify fluorescent signals via Cas12a-based trans-cleavage activity of FQ reporter substrates, respectively, and in the absence of an isothermal amplification step. To enhance detection sensitivity, the DNA barcode system was engineered by introducing multiple Cas12a recognition sites. Use of biotinylated DNA barcodes enabled self-assembly onto streptavidin (SA) to generate SA-DNA barcode complexes to increase the number and density of Cas12a recognition sites attached to biotinylated anti-CXCL9 antibody. As a result, we improved the rate of CXCL9 detection approximately 8-fold when compared to the use of a monomeric DNA barcode. The limit of detection (LOD) for CXCL9 using the immuno-CRISPR assay was 14 pg/mL, which represented an ∼7-fold improvement when compared to traditional HRP-based ELISA. Selectivity was shown with a lack of crossover reactivity with the related chemokine CXCL1. Finally, we successfully evaluated the presence of CXCL9 in urine samples from 11 kidney transplant recipients using the immuno-CRISPR assay, resulting in 100% accuracy to clinical CXCL9 determination and paving the way for use as a point-of-care noninvasive biomarker for the detection of kidney transplant rejection.


Assuntos
Quimiocina CXCL9/urina , Repetições Palindrômicas Curtas Agrupadas e Regularmente Espaçadas , DNA de Cadeia Simples , Rejeição de Enxerto/diagnóstico , Imunoensaio , Humanos , Transplante de Rim , Limite de Detecção , RNA , Estreptavidina , Transplantados
10.
Thromb J ; 19(1): 66, 2021 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-34526009

RESUMO

BACKGROUND: This is a review article on heparin-induced thrombocytopenia, an adverse effect of heparin therapy, and vaccine-induced immune thrombotic thrombocytopenia, occurring in some patients administered certain coronavirus vaccines. MAIN BODY/TEXT: Immune-mediated thrombocytopenia occurs when specific antibodies bind to platelet factor 4 /heparin complexes. Platelet factor 4 is a naturally occurring chemokine, and under certain conditions, may complex with negatively charged molecules and polyanions, including heparin. The antibody-platelet factor 4/heparin complex may lead to platelet activation, accompanied by other cascading reactions, resulting in cerebral sinus thrombosis, deep vein thrombosis, lower limb arterial thrombosis, myocardial infarction, pulmonary embolism, skin necrosis, and thrombotic stroke. If untreated, heparin-induced thrombocytopenia can be life threatening. In parallel, rare incidents of spontaneous vaccine-induced immune thrombotic thrombocytopenia can also occur in some patients administered certain coronavirus vaccines. The role of platelet factor 4 in vaccine-induced thrombosis with thrombocytopenia syndrome further reinforces the importance the platelet factor 4/polyanion immune complexes and the complications that this might pose to susceptible individuals. These findings demonstrate, how auxiliary factors can complicate heparin therapy and drug development. An increasing interest in biomanufacturing heparins from non-animal sources has driven a growing interest in understanding the biology of immune-mediated heparin-induced thrombocytopenia, and therefore, the development of safe and effective biosynthetic heparins. SHORT CONCLUSION: In conclusion, these findings further reinforce the importance of the binding of platelet factor 4 with known and unknown polyanions, and the complications that these might pose to susceptible patients. In parallel, these findings also demonstrate how auxiliary factors can complicate the heparin drug development.

11.
Appl Microbiol Biotechnol ; 105(3): 1051-1062, 2021 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-33481068

RESUMO

Heparosan is a naturally occurring non-sulfated glycosaminoglycan. Heparosan serves as the substrate for chemoenzymatic synthesis of biopharmaceutically important heparan sulfate and heparin. Heparosan is biologically inert molecule, non-toxic, and non-immunogenic and these qualities of heparosan make it an ideal drug delivery vehicle. The critical-to-quality (CTQ) attributes for heparosan applications include composition of heparosan, absence of any unnatural moieties, and heparosan molecular weight size and unimodal distribution. Probiotic bacteria E. coli Nissle 1917 (EcN) is a natural producer of heparosan. The current work explores production of EcN heparosan and process parameters that may impact the heparosan CTQ attributes. Results show that EcN could be grown to high cell densities (OD600 160-180) in a chemically defined media. The fermentation process is successfully scaled from 5-L to 100-L bioreactor. The chemical composition of heparosan from EcN was confirmed using nuclear magnetic resonance. Results demonstrate that heparosan molecular weight distribution may be influenced by fermentation and purification conditions. Size exclusion chromatography analysis shows that the heparosan purified from fermentation broth results in bimodal distribution, and cell-free supernatant results in unimodal distribution (average molecular weight 68,000 Da). The yield of EcN-derived heparosan was 3 g/L of cell free supernatant. We further evaluated the application of Nissle 1917 heparosan for chemical modification to prepare N-sulfo heparosan (NSH), the first intermediate precursor for heparin and heparan sulfate. KEY POINTS: • High cell density fermentation, using a chemically defined fermentation media for the growth of probiotic bacteria EcN (E. coli Nissle 1917, a natural producer of heparosan) is reported. • Process parameters towards the production of monodispersed heparosan using probiotic bacteria EcN (Nissle 1917) has been explored and discussed. • The media composition and the protocol (SOPs and batch records) have been successfully transferred to contract manufacturing facilities and industrial partners.


Assuntos
Escherichia coli , Probióticos , Dissacarídeos , Fermentação
12.
Biochemistry ; 59(27): 2576-2584, 2020 07 14.
Artigo em Inglês | MEDLINE | ID: mdl-32579846

RESUMO

Heparin is a widely used biotherapeutic produced from animal tissues. However, it might be possible to produce a bioengineered version using a multienzyme process, relying on the isolation of the E. coli K5 capsule heparosan and its chemical conversion to N-sulfoheparosan, NSH. Glucuronyl C5-epimerase, the first enzyme that acts on NSH, catalyzes the reversible conversion of glucuronic acid (GlcA) to iduronic acid (IdoA). Using full-length NSH, containing different amounts of N-acetylglucosamine (GlcNAc) residues, we demonstrate that C5-epimerase specificity relates to polysaccharide sequence, particularly the location of GlcNAc residues within the chain. We leveraged the deuterium exchange and the novel ß-glucuronidase heparanase BP, which cleaves at the GlcA residue. Liquid chromatography-mass spectrometry and gel permeation chromatography of partial/complete heparanase BP digestion products from various NSH substrates treated with C5-epimerase provide information on C5-epimerase activity and action pattern. This study provides insight into optimizing the large-scale production of bioengineered heparin.


Assuntos
Carboidratos Epimerases/química , Carboidratos Epimerases/metabolismo , Escherichia coli/enzimologia , Ácido Glucurônico/química , Polissacarídeos/química , Acetilglucosamina/química , Catálise , Dissacarídeos/química , Escherichia coli/isolamento & purificação , Heparina/química , Humanos , Espectrometria de Massas/métodos , Especificidade por Substrato
13.
Glycobiology ; 30(11): 847-858, 2020 10 21.
Artigo em Inglês | MEDLINE | ID: mdl-32304324

RESUMO

The chemoenzymatic synthesis of heparin, through a multienzyme process, represents a critical challenge in providing a safe and effective substitute for this animal-sourced anticoagulant drug. D-glucuronyl C5-epimerase (C5-epi) is an enzyme acting on a heparin precursor, N-sulfoheparosan, catalyzing the reversible epimerization of D-glucuronic acid (GlcA) to L-iduronic acid (IdoA). The absence of reliable assays for C5-epi has limited elucidation of the enzymatic reaction and kinetic mechanisms. Real time and offline assays are described that rely on 1D 1H NMR to study the activity of C5-epi. Apparent steady-state kinetic parameters for both the forward and the pseudo-reverse reactions of C5-epi are determined for the first time using polysaccharide substrates directly relevant to the chemoenzymatic synthesis and biosynthesis of heparin. The forward reaction shows unusual sigmoidal kinetic behavior, and the pseudo-reverse reaction displays nonsaturating kinetic behavior. The atypical sigmoidal behavior of the forward reaction was probed using a range of buffer additives. Surprisingly, the addition of 25 mM each of CaCl2 and MgCl2 resulted in a forward reaction exhibiting more conventional Michaelis-Menten kinetics. The addition of 2-O-sulfotransferase, the next enzyme involved in heparin synthesis, in the absence of 3'-phosphoadenosine 5'-phosphosulfate, also resulted in C5-epi exhibiting a more conventional Michaelis-Menten kinetic behavior in the forward reaction accompanied by a significant increase in apparent Vmax. This study provides critical information for understanding the reaction kinetics of C5-epi, which may result in improved methods for the chemoenzymatic synthesis of bioengineered heparin.


Assuntos
Carboidratos Epimerases/metabolismo , Ácido Glucurônico/metabolismo , Ácido Idurônico/metabolismo , Biocatálise , Configuração de Carboidratos , Carboidratos Epimerases/isolamento & purificação , Ácido Glucurônico/química , Humanos , Ácido Idurônico/química , Cinética
14.
Glycoconj J ; 37(5): 589-597, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-32778986

RESUMO

Heparosan, the capsular polysaccharide of E. coli K5 is currently used as the starting material in the chemoenzymatic synthesis of heparan sulfate and the structurally related anticoagulant drug heparin. Base hydrolysis of N-acetyl groups and their subsequent N-sulfonation, are used to prepare N-sulfoheparosan an intermediate of biosynthesis. In the present study, when excess sulfonation reagent was used during N-sulfonation, some O-sulfation also took place in the N-sulfoheparosan product. After a nearly full digestion, a hexasaccharide fraction exhibited resistance to heparin lyase II. Excessive digestion by heparin lyase II and structural identification by NMR and mass spectroscopy indicated that the resistant hexasaccharide fraction has two structures, ΔUA-GlcNS-GlcA2S-GlcNS-GlcA-GlcNS and ΔUA-GlcNS-GlcA- GlcNS3S-GlcA-GlcNS in similar amounts. The 2-sulfated structure exhibited partial resistance to heparin lyase II; however the structure of ΔUA-GlcNS-GlcA-GlcNS3S was completely resistant to heparin lyase II.


Assuntos
Anticoagulantes/química , Dissacarídeos/química , Glucuronatos/química , Heparitina Sulfato/química , Animais , Cromatografia Líquida de Alta Pressão , Dissacarídeos/biossíntese , Glucuronatos/metabolismo , Heparitina Sulfato/biossíntese , Humanos , Hidrolases/química , Hidrólise , Espectroscopia de Ressonância Magnética , Espectrometria de Massas
15.
Appl Microbiol Biotechnol ; 104(21): 9019-9040, 2020 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-32945900

RESUMO

In light of emerging antibiotic resistance, bacterial cell wall lytic enzymes are promising antimicrobial agents that degrade bacterial peptidoglycan while specifically recognizing the target bacterium. The efficacy of lytic enzymes against several multi-drug-resistant pathogens infecting humans has led to many efforts focused on in vivo therapeutic applications. However, the potential for lytic enzymes to combat bacterial contamination in environments outside the human body is underexplored. The persistence of pathogenic bacteria, in either planktonic or biofilm states and on various surfaces, has facilitated the spread of bacterial infections, necessitating the development of robust strategies for detecting and killing resistant bacteria in diverse environments. Here, we present an overview of the current state-of-the-art of exploiting lytic enzymes for non-therapeutic applications including pathogen decontamination in social infrastructures and food decontamination, as well as pathogen detection. KEY POINTS: • Lytic enzymes are effective antimicrobial, antibiofilm, and sporicidal agents. • Pathogen detection using lytic enzyme-binding domains is rapid and highly sensitive. • Domain engineering is required for enhanced enzyme activity in complex environments.


Assuntos
Infecções Bacterianas , Bacteriófagos , Antibacterianos/farmacologia , Parede Celular , Endopeptidases , Humanos , Peptidoglicano
16.
Biochemistry ; 58(8): 1155-1166, 2019 02 26.
Artigo em Inglês | MEDLINE | ID: mdl-30698412

RESUMO

Zika virus (ZIKV) is an enveloped RNA virus from the flavivirus family that can cause fetal neural abnormalities in pregnant women. Previously, we established that ZIKV-EP (envelope protein) binds to human placental chondroitin sulfate (CS), suggesting that CS may be a potential host cell surface receptor in ZIKV pathogenesis. In this study, we further characterized the GAG disaccharide composition of other biological tissues (i.e., mosquitoes, fetal brain cells, and eye tissues) in ZIKV pathogenesis to investigate the role of tissue specific GAGs. Heparan sulfate (HS) was the major GAG, and levels of HS-6-sulfo, HS 0S (unsulfated HS), and CS 4S disaccharides were the main differences in the GAG composition of Aedes aegypti and Aedes albopictus mosquitoes. In human fetal neural progenitor and differentiated cells, HS 0S and CS 4S were the main disaccharides. A change in disaccharide composition levels was observed between undifferentiated and differentiated cells. In different regions of the bovine eyes, CS was the major GAG, and the amounts of hyaluronic acid or keratan sulfate varied depending on the region of the eye. Next, we examined heparin (HP) of various structures to investigate their potential in vitro antiviral activity against ZIKV and Dengue virus (DENV) infection in Vero cells. All compounds effectively inhibited DENV replication; however, they surprisingly promoted ZIKV replication. HP of longer chain lengths more strongly promoted activity in ZIKV replication. This study further expands our understanding of role of GAGs in ZIKV pathogenesis and carbohydrate-based antivirals against flaviviral infection.


Assuntos
Aedes/metabolismo , Dengue/tratamento farmacológico , Olho/metabolismo , Feto/metabolismo , Glicosaminoglicanos/metabolismo , Heparitina Sulfato/farmacologia , Infecção por Zika virus/tratamento farmacológico , Aedes/virologia , Animais , Antivirais/farmacologia , Bovinos , Chlorocebus aethiops , Dengue/metabolismo , Dengue/patologia , Dengue/virologia , Vírus da Dengue/patogenicidade , Olho/efeitos dos fármacos , Feto/efeitos dos fármacos , Glicosaminoglicanos/química , Heparitina Sulfato/química , Humanos , Técnicas In Vitro , Mosquitos Vetores/virologia , Células-Tronco Neurais/citologia , Células-Tronco Neurais/efeitos dos fármacos , Células-Tronco Neurais/metabolismo , Células Vero , Internalização do Vírus , Replicação Viral , Zika virus/patogenicidade , Infecção por Zika virus/metabolismo , Infecção por Zika virus/patologia , Infecção por Zika virus/virologia
17.
Biotechnol Bioeng ; 116(12): 3149-3159, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-31433061

RESUMO

Bacteriolytic enzymes (cell lytic enzymes) are promising alternatives to antibiotics especially in killing drug-resistant bacteria. However, some bacteria slowly become resistant to various classes of peptidoglycan hydrolases, for reasons not well studied, in the presence of growth-supporting nutrients, which are prevalent at sites of infection. Here, we show that Staphylococcus aureus, a human and animal pathogen, while susceptible to the potent staphylolytic enzyme lysostaphin (Lst) in buffered saline, is highly resistant in the rich medium tryptic soy broth (TSB). Through a series of biochemical analysis, we identified that the resistance was due to prevention of Lst-cell binding mediated by the wall teichoic acids (WTAs) present on the cell surface. Inhibition or deletion of the gene tarO responsible for the first step of WTA biosynthesis greatly reduced S. aureus resistance to Lst in TSB. To overcome the resistance, we took advantage of the gene regulation potential of CRISPR-dCas9 and demonstrated that downregulation of tarO, tarH, and/or tarG gene expression, the latter two encoding enzymes that anchor WTAs in the outer layer of cell wall peptidoglycan, sensitized S. aureus to Lst and enabled eradication of the bacterium in TSB in 24 hr. As a result, we elucidate a key mechanism of Lst resistance in metabolically active S. aureus and provide a potential approach for treating life-threatening or hard-to-treat infections caused by Gram-positive pathogens.


Assuntos
Sistemas CRISPR-Cas , Farmacorresistência Bacteriana , Deleção de Genes , Regulação Bacteriana da Expressão Gênica , Lisostafina/farmacologia , Staphylococcus aureus , Animais , Farmacorresistência Bacteriana/efeitos dos fármacos , Farmacorresistência Bacteriana/genética , Regulação Bacteriana da Expressão Gênica/efeitos dos fármacos , Regulação Bacteriana da Expressão Gênica/genética , Genes Bacterianos , Humanos , Staphylococcus aureus/genética , Staphylococcus aureus/crescimento & desenvolvimento
18.
Biotechnol Bioeng ; 116(1): 168-180, 2019 01.
Artigo em Inglês | MEDLINE | ID: mdl-30229860

RESUMO

Identification of conditions for guided and specific differentiation of human stem cell and progenitor cells is important for continued development and engineering of in vitro cell culture systems for use in regenerative medicine, drug discovery, and human toxicology. Three-dimensional (3D) and organotypic cell culture models have been used increasingly for in vitro cell culture because they may better model endogenous tissue environments. However, detailed studies of stem cell differentiation within 3D cultures remain limited, particularly with respect to high-throughput screening. Herein, we demonstrate the use of a microarray chip-based platform to screen, in high-throughput, individual and paired effects of 12 soluble factors on the neuronal differentiation of a human neural progenitor cell line (ReNcell VM) encapsulated in microscale 3D Matrigel cultures. Dose-response analysis of selected combinations from the initial combinatorial screen revealed that the combined treatment of all-trans retinoic acid (RA) with the glycogen synthase kinase 3 inhibitor CHIR-99021 (CHIR) enhances neurogenesis while simultaneously decreases astrocyte differentiation, whereas the combined treatment of brain-derived neurotrophic factor and the small azide neuropathiazol enhances the differentiation into neurons and astrocytes. Subtype specification analysis of RA- and CHIR-differentiated cultures revealed that enhanced neurogenesis was not biased toward a specific neuronal subtype. Together, these results demonstrate a high-throughput screening platform for rapid evaluation of differentiation conditions in a 3D environment, which will aid the development and application of 3D stem cell culture models.


Assuntos
Diferenciação Celular/efeitos dos fármacos , Fatores de Crescimento Neural/isolamento & purificação , Fatores de Crescimento Neural/farmacologia , Neurogênese/efeitos dos fármacos , Neurônios/efeitos dos fármacos , Neurônios/fisiologia , Células-Tronco/efeitos dos fármacos , Ensaios de Triagem em Larga Escala , Humanos , Análise em Microsséries , Técnicas de Cultura de Órgãos
19.
Biotechnol Bioeng ; 116(1): 193-205, 2019 01.
Artigo em Inglês | MEDLINE | ID: mdl-30102775

RESUMO

Advancing our knowledge of how neural stem cell (NSC) behavior in the adult hippocampus is regulated has implications for elucidating basic mechanisms of learning and memory as well as for neurodegenerative disease therapy. To date, numerous biochemical cues from the endogenous hippocampal NSC niche have been identified as modulators of NSC quiescence, proliferation, and differentiation; however, the complex repertoire of signaling factors within stem cell niches raises the question of how cues act in combination with one another to influence NSC physiology. To help overcome experimental bottlenecks in studying this question, we adapted a high-throughput microculture system, with over 500 distinct microenvironments, to conduct a systematic combinatorial screen of key signaling cues and collect high-content phenotype data on endpoint NSC populations. This novel application of the platform consumed only 0.2% of reagent volumes used in conventional 96-well plates, and resulted in the discovery of numerous statistically significant interactions among key endogenous signals. Antagonistic relationships between fibroblast growth factor 2, transforming growth factor ß (TGF-ß), and Wnt-3a were found to impact NSC proliferation and differentiation, whereas a synergistic relationship between Wnt-3a and Ephrin-B2 on neuronal differentiation and maturation was found. Furthermore, TGF-ß and bone morphogenetic protein 4 combined with Wnt-3a and Ephrin-B2 resulted in a coordinated effect on neuronal differentiation and maturation. Overall, this study offers candidates for further elucidation of significant mechanisms guiding NSC fate choice and contributes strategies for enhancing control over stem cell-based therapies for neurodegenerative diseases.


Assuntos
Diferenciação Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Hipocampo/citologia , Peptídeos e Proteínas de Sinalização Intercelular/isolamento & purificação , Peptídeos e Proteínas de Sinalização Intercelular/metabolismo , Células-Tronco Neurais/efeitos dos fármacos , Transdução de Sinais , Adulto , Ensaios de Triagem em Larga Escala , Humanos
20.
Biomacromolecules ; 20(10): 4035-4043, 2019 10 14.
Artigo em Inglês | MEDLINE | ID: mdl-31524374

RESUMO

Lytic enzymes have been considered as potential alternatives to antibiotics. These enzymes, particularly those that target Gram-positive bacteria, consist of modular cell wall-binding and catalytic domains, which can be shuffled with those of other lytic enzymes to produce unnatural chimeric enzymes. In this work, we report the in vitro shuffling of two different modular domains using a protein self-assembly methodology. Catalytic domains (CD) and cell wall-binding domains (BD) from the bacteriocin lysostaphin (Lst) and a putative autolysin from Staphylococcus aureus (SA1), respectively, were genetically site-specifically biotinylated and assembled with streptavidin to generate 23 permuted chimeras. The specific assembly of a CD (3 equiv) and a BD (1 equiv) from Lst and SA1, respectively [CDL-BDS (3:1)], on a streptavidin scaffold yielded high lytic activity against S. aureus (at least 5.6 log reduction), which was higher than that obtained with either native Lst or SA1 alone. Moreover, at 37 °C, the initial rate of cell lysis was over 3-fold higher than that with free Lst, thereby revealing the unique catalytic properties of the chimeric proteins. In vitro self-assembly of functional domains from modular lytic enzymes on a protein scaffold likely expands the repertoire of bactericidal enzymes with improved activities.


Assuntos
Antibacterianos/química , Antibacterianos/farmacologia , Staphylococcus aureus/efeitos dos fármacos , Domínio Catalítico/efeitos dos fármacos , Parede Celular/efeitos dos fármacos , Quimera , Lisostafina/química , Lisostafina/farmacocinética , N-Acetil-Muramil-L-Alanina Amidase/química , N-Acetil-Muramil-L-Alanina Amidase/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA