Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 35
Filtrar
1.
Cell ; 186(2): 305-326.e27, 2023 01 19.
Artigo em Inglês | MEDLINE | ID: mdl-36638792

RESUMO

All living things experience an increase in entropy, manifested as a loss of genetic and epigenetic information. In yeast, epigenetic information is lost over time due to the relocalization of chromatin-modifying proteins to DNA breaks, causing cells to lose their identity, a hallmark of yeast aging. Using a system called "ICE" (inducible changes to the epigenome), we find that the act of faithful DNA repair advances aging at physiological, cognitive, and molecular levels, including erosion of the epigenetic landscape, cellular exdifferentiation, senescence, and advancement of the DNA methylation clock, which can be reversed by OSK-mediated rejuvenation. These data are consistent with the information theory of aging, which states that a loss of epigenetic information is a reversible cause of aging.


Assuntos
Envelhecimento , Epigênese Genética , Animais , Envelhecimento/genética , Metilação de DNA , Epigenoma , Mamíferos/genética , Nucleoproteínas , Saccharomyces cerevisiae/genética
3.
Nature ; 629(8013): 869-877, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38693267

RESUMO

Airway hillocks are stratified epithelial structures of unknown function1. Hillocks persist for months and have a unique population of basal stem cells that express genes associated with barrier function and cell adhesion. Hillock basal stem cells continually replenish overlying squamous barrier cells. They exhibit dramatically higher turnover than the abundant, largely quiescent classic pseudostratified airway epithelium. Hillocks resist a remarkably broad spectrum of injuries, including toxins, infection, acid and physical injury because hillock squamous cells shield underlying hillock basal stem cells from injury. Hillock basal stem cells are capable of massive clonal expansion that is sufficient to resurface denuded airway, and eventually regenerate normal airway epithelium with each of its six component cell types. Hillock basal stem cells preferentially stratify and keratinize in the setting of retinoic acid signalling inhibition, a known cause of squamous metaplasia2,3. Here we show that mouse hillock expansion is the cause of vitamin A deficiency-induced squamous metaplasia. Finally, we identify human hillocks whose basal stem cells generate functional squamous barrier structures in culture. The existence of hillocks reframes our understanding of airway epithelial regeneration. Furthermore, we show that hillocks are one origin of 'squamous metaplasia', which is long thought to be a precursor of lung cancer.


Assuntos
Plasticidade Celular , Células Epiteliais , Regeneração , Mucosa Respiratória , Células-Tronco , Animais , Feminino , Humanos , Masculino , Camundongos , Células Epiteliais/citologia , Células Epiteliais/patologia , Metaplasia/etiologia , Metaplasia/patologia , Mucosa Respiratória/citologia , Mucosa Respiratória/lesões , Mucosa Respiratória/patologia , Células-Tronco/citologia , Tretinoína/metabolismo , Tretinoína/farmacologia , Vitamina A/metabolismo , Vitamina A/farmacologia , Neoplasias Pulmonares/etiologia , Neoplasias Pulmonares/patologia , Camundongos Endogâmicos C57BL
4.
Nature ; 622(7983): 627-636, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37821702

RESUMO

Senescent cells drive age-related tissue dysfunction partially through the induction of a chronic senescence-associated secretory phenotype (SASP)1. Mitochondria are major regulators of the SASP; however, the underlying mechanisms have not been elucidated2. Mitochondria are often essential for apoptosis, a cell fate distinct from cellular senescence. During apoptosis, widespread mitochondrial outer membrane permeabilization (MOMP) commits a cell to die3. Here we find that MOMP occurring in a subset of mitochondria is a feature of cellular senescence. This process, called minority MOMP (miMOMP), requires BAX and BAK macropores enabling the release of mitochondrial DNA (mtDNA) into the cytosol. Cytosolic mtDNA in turn activates the cGAS-STING pathway, a major regulator of the SASP. We find that inhibition of MOMP in vivo decreases inflammatory markers and improves healthspan in aged mice. Our results reveal that apoptosis and senescence are regulated by similar mitochondria-dependent mechanisms and that sublethal mitochondrial apoptotic stress is a major driver of the SASP. We provide proof-of-concept that inhibition of miMOMP-induced inflammation may be a therapeutic route to improve healthspan.


Assuntos
Apoptose , Senescência Celular , Citosol , DNA Mitocondrial , Mitocôndrias , Animais , Camundongos , Citosol/metabolismo , DNA Mitocondrial/metabolismo , Mitocôndrias/genética , Mitocôndrias/metabolismo , Necrose Dirigida por Permeabilidade Transmembrânica da Mitocôndria , Estudo de Prova de Conceito , Inflamação/metabolismo , Fenótipo , Longevidade , Envelhecimento Saudável
5.
Genes Dev ; 34(5-6): 428-445, 2020 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-32001510

RESUMO

Cellular senescence is a potent tumor suppressor mechanism but also contributes to aging and aging-related diseases. Senescence is characterized by a stable cell cycle arrest and a complex proinflammatory secretome, termed the senescence-associated secretory phenotype (SASP). We recently discovered that cytoplasmic chromatin fragments (CCFs), extruded from the nucleus of senescent cells, trigger the SASP through activation of the innate immunity cytosolic DNA sensing cGAS-STING pathway. However, the upstream signaling events that instigate CCF formation remain unknown. Here, we show that dysfunctional mitochondria, linked to down-regulation of nuclear-encoded mitochondrial oxidative phosphorylation genes, trigger a ROS-JNK retrograde signaling pathway that drives CCF formation and hence the SASP. JNK links to 53BP1, a nuclear protein that negatively regulates DNA double-strand break (DSB) end resection and CCF formation. Importantly, we show that low-dose HDAC inhibitors restore expression of most nuclear-encoded mitochondrial oxidative phosphorylation genes, improve mitochondrial function, and suppress CCFs and the SASP in senescent cells. In mouse models, HDAC inhibitors also suppress oxidative stress, CCF, inflammation, and tissue damage caused by senescence-inducing irradiation and/or acetaminophen-induced mitochondria dysfunction. Overall, our findings outline an extended mitochondria-to-nucleus retrograde signaling pathway that initiates formation of CCF during senescence and is a potential target for drug-based interventions to inhibit the proaging SASP.


Assuntos
Núcleo Celular/patologia , Senescência Celular/fisiologia , Cromatina/patologia , Citoplasma/patologia , Mitocôndrias/patologia , Transdução de Sinais , Animais , Núcleo Celular/fisiologia , Regulação da Expressão Gênica no Desenvolvimento/efeitos dos fármacos , Inibidores de Histona Desacetilases/farmacologia , Humanos , Inflamação/fisiopatologia , Sistema de Sinalização das MAP Quinases/fisiologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/fisiologia , Espécies Reativas de Oxigênio/metabolismo , Proteína 1 de Ligação à Proteína Supressora de Tumor p53/metabolismo
6.
Mol Cell ; 73(4): 684-698.e8, 2019 02 21.
Artigo em Inglês | MEDLINE | ID: mdl-30773298

RESUMO

Accumulation of senescent cells during aging contributes to chronic inflammation and age-related diseases. While senescence is associated with profound alterations of the epigenome, a systematic view of epigenetic factors in regulating senescence is lacking. Here, we curated a library of short hairpin RNAs for targeted silencing of all known epigenetic proteins and performed a high-throughput screen to identify key candidates whose downregulation can delay replicative senescence of primary human cells. This screen identified multiple new players including the histone acetyltransferase p300 that was found to be a primary driver of the senescent phenotype. p300, but not the paralogous CBP, induces a dynamic hyper-acetylated chromatin state and promotes the formation of active enhancer elements in the non-coding genome, leading to a senescence-specific gene expression program. Our work illustrates a causal role of histone acetyltransferases and acetylation in senescence and suggests p300 as a potential therapeutic target for senescence and age-related diseases.


Assuntos
Proliferação de Células , Senescência Celular , Montagem e Desmontagem da Cromatina , Cromatina/enzimologia , Fibroblastos/enzimologia , Histonas/metabolismo , Processamento de Proteína Pós-Traducional , Fatores de Transcrição de p300-CBP/metabolismo , Acetilação , Proliferação de Células/genética , Senescência Celular/genética , Cromatina/genética , Montagem e Desmontagem da Cromatina/genética , Repressão Epigenética , Células HEK293 , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Histonas/genética , Humanos , Interferência de RNA , RNA Interferente Pequeno/genética , RNA Interferente Pequeno/metabolismo , Transdução de Sinais , Fatores de Tempo , Transcrição Gênica , Fatores de Transcrição de p300-CBP/genética
7.
Blood ; 142(23): 2002-2015, 2023 12 07.
Artigo em Inglês | MEDLINE | ID: mdl-37738460

RESUMO

Acute myeloid leukemia (AML) with TP53 mutation is one of the most lethal cancers and portends an extremely poor prognosis. Based on in silico analyses of druggable genes and differential gene expression in TP53-mutated AML, we identified pololike kinase 4 (PLK4) as a novel therapeutic target and examined its expression, regulation, pathogenetic mechanisms, and therapeutic potential in TP53-mutated AML. PLK4 expression was suppressed by activated p53 signaling in TP53 wild-type AML and was increased in TP53-mutated AML cell lines and primary samples. Short-term PLK4 inhibition induced DNA damage and apoptosis in TP53 wild-type AML. Prolonged PLK4 inhibition suppressed the growth of TP53-mutated AML and was associated with DNA damage, apoptosis, senescence, polyploidy, and defective cytokinesis. A hitherto undescribed PLK4/PRMT5/EZH2/H3K27me3 axis was demonstrated in both TP53 wild-type and mutated AML, resulting in histone modification through PLK4-induced PRMT5 phosphorylation. In TP53-mutated AML, combined effects of histone modification and polyploidy activated the cGAS-STING pathway, leading to secretion of cytokines and chemokines and activation of macrophages and T cells upon coculture with AML cells. In vivo, PLK4 inhibition also induced cytokine and chemokine expression in mouse recipients, and its combination with anti-CD47 antibody, which inhibited the "don't-eat-me" signal in macrophages, synergistically reduced leukemic burden and prolonged animal survival. The study shed important light on the pathogenetic role of PLK4 and might lead to novel therapeutic strategies in TP53-mutated AML.


Assuntos
Histonas , Leucemia Mieloide Aguda , Animais , Camundongos , Histonas/metabolismo , Proteína Supressora de Tumor p53/genética , Proteína Supressora de Tumor p53/metabolismo , Mutação , Metilação , Nucleotidiltransferases/metabolismo , Leucemia Mieloide Aguda/patologia , Imunidade , Poliploidia
9.
Mol Cell ; 61(5): 720-733, 2016 Mar 03.
Artigo em Inglês | MEDLINE | ID: mdl-26942676

RESUMO

TRIM21 is a RING finger domain-containing ubiquitin E3 ligase whose expression is elevated in autoimmune disease. While TRIM21 plays an important role in immune activation during pathogen infection, little is known about its inherent cellular function. Here we show that TRIM21 plays an essential role in redox regulation by directly interacting with SQSTM1/p62 and ubiquitylating p62 at lysine 7 (K7) via K63-linkage. As p62 oligomerizes and sequesters client proteins in inclusions, the TRIM21-mediated p62 ubiquitylation abrogates p62 oligomerization and sequestration of proteins including Keap1, a negative regulator of antioxidant response. TRIM21-deficient cells display an enhanced antioxidant response and reduced cell death in response to oxidative stress. Genetic ablation of TRIM21 in mice confers protection from oxidative damages caused by arsenic-induced liver insult and pressure overload heart injury. Therefore, TRIM21 plays an essential role in p62-regulated redox homeostasis and may be a viable target for treating pathological conditions resulting from oxidative damage.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Proteínas de Choque Térmico/metabolismo , Estresse Oxidativo , Ribonucleoproteínas/metabolismo , Ubiquitinação , Proteínas Adaptadoras de Transdução de Sinal/genética , Animais , Trióxido de Arsênio , Arsenicais , Morte Celular , Doença Hepática Induzida por Substâncias e Drogas/enzimologia , Doença Hepática Induzida por Substâncias e Drogas/genética , Doença Hepática Induzida por Substâncias e Drogas/patologia , Doença Hepática Induzida por Substâncias e Drogas/prevenção & controle , Proteínas do Citoesqueleto/metabolismo , Modelos Animais de Doenças , Células HEK293 , Insuficiência Cardíaca/enzimologia , Insuficiência Cardíaca/genética , Insuficiência Cardíaca/patologia , Insuficiência Cardíaca/prevenção & controle , Proteínas de Choque Térmico/genética , Homeostase , Humanos , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Proteína 1 Associada a ECH Semelhante a Kelch , Fígado/enzimologia , Fígado/patologia , Lisina , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Miocárdio/enzimologia , Miocárdio/patologia , Oxirredução , Óxidos , Ligação Proteica , Domínios e Motivos de Interação entre Proteínas , Multimerização Proteica , Interferência de RNA , Ribonucleoproteínas/deficiência , Ribonucleoproteínas/genética , Proteína Sequestossoma-1 , Transdução de Sinais , Fatores de Tempo , Transfecção
10.
Genes Dev ; 30(3): 321-36, 2016 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-26833731

RESUMO

Oncogene-induced senescence (OIS) and therapy-induced senescence (TIS), while tumor-suppressive, also promote procarcinogenic effects by activating the DNA damage response (DDR), which in turn induces inflammation. This inflammatory response prominently includes an array of cytokines known as the senescence-associated secretory phenotype (SASP). Previous observations link the transcription-associated methyltransferase and oncoprotein MLL1 to the DDR, leading us to investigate the role of MLL1 in SASP expression. Our findings reveal direct MLL1 epigenetic control over proproliferative cell cycle genes: MLL1 inhibition represses expression of proproliferative cell cycle regulators required for DNA replication and DDR activation, thus disabling SASP expression. Strikingly, however, these effects of MLL1 inhibition on SASP gene expression do not impair OIS and, furthermore, abolish the ability of the SASP to enhance cancer cell proliferation. More broadly, MLL1 inhibition also reduces "SASP-like" inflammatory gene expression from cancer cells in vitro and in vivo independently of senescence. Taken together, these data demonstrate that MLL1 inhibition may be a powerful and effective strategy for inducing cancerous growth arrest through the direct epigenetic regulation of proliferation-promoting genes and the avoidance of deleterious OIS- or TIS-related tumor secretomes, which can promote both drug resistance and tumor progression.


Assuntos
Senescência Celular/genética , Regulação Neoplásica da Expressão Gênica/genética , Histona-Lisina N-Metiltransferase/genética , Histona-Lisina N-Metiltransferase/metabolismo , Proteína de Leucina Linfoide-Mieloide/genética , Proteína de Leucina Linfoide-Mieloide/metabolismo , Transdução de Sinais/genética , Proteínas Mutadas de Ataxia Telangiectasia/metabolismo , Proteínas de Ciclo Celular/genética , Linhagem Celular , Proliferação de Células , Dano ao DNA , Técnicas de Silenciamento de Genes , Células HEK293 , Histona-Lisina N-Metiltransferase/antagonistas & inibidores , Humanos , Inflamação/genética , Células MCF-7 , Proteína de Leucina Linfoide-Mieloide/antagonistas & inibidores , NF-kappa B/metabolismo , Neoplasias/fisiopatologia , Fenótipo
11.
Nature ; 550(7676): 402-406, 2017 10 19.
Artigo em Inglês | MEDLINE | ID: mdl-28976970

RESUMO

Chromatin is traditionally viewed as a nuclear entity that regulates gene expression and silencing. However, we recently discovered the presence of cytoplasmic chromatin fragments that pinch off from intact nuclei of primary cells during senescence, a form of terminal cell-cycle arrest associated with pro-inflammatory responses. The functional significance of chromatin in the cytoplasm is unclear. Here we show that cytoplasmic chromatin activates the innate immunity cytosolic DNA-sensing cGAS-STING (cyclic GMP-AMP synthase linked to stimulator of interferon genes) pathway, leading both to short-term inflammation to restrain activated oncogenes and to chronic inflammation that associates with tissue destruction and cancer. The cytoplasmic chromatin-cGAS-STING pathway promotes the senescence-associated secretory phenotype in primary human cells and in mice. Mice deficient in STING show impaired immuno-surveillance of oncogenic RAS and reduced tissue inflammation upon ionizing radiation. Furthermore, this pathway is activated in cancer cells, and correlates with pro-inflammatory gene expression in human cancers. Overall, our findings indicate that genomic DNA serves as a reservoir to initiate a pro-inflammatory pathway in the cytoplasm in senescence and cancer. Targeting the cytoplasmic chromatin-mediated pathway may hold promise in treating inflammation-related disorders.


Assuntos
Senescência Celular/genética , Cromatina/metabolismo , Citoplasma/genética , Imunidade Inata , Inflamação/genética , Inflamação/patologia , Neoplasias/genética , Neoplasias/imunologia , Animais , Linhagem Celular Tumoral , Cromatina/imunologia , Citocinas/imunologia , Citocinas/metabolismo , Citoplasma/imunologia , Feminino , Humanos , Inflamação/imunologia , Fígado/metabolismo , Masculino , Proteínas de Membrana/deficiência , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Camundongos , Neoplasias/patologia , Nucleotidiltransferases/metabolismo , Proteína Oncogênica p21(ras)/genética , Proteína Oncogênica p21(ras)/imunologia , Radiação Ionizante
12.
Nature ; 527(7576): 105-9, 2015 Nov 05.
Artigo em Inglês | MEDLINE | ID: mdl-26524528

RESUMO

Macroautophagy (hereafter referred to as autophagy) is a catabolic membrane trafficking process that degrades a variety of cellular constituents and is associated with human diseases. Although extensive studies have focused on autophagic turnover of cytoplasmic materials, little is known about the role of autophagy in degrading nuclear components. Here we report that the autophagy machinery mediates degradation of nuclear lamina components in mammals. The autophagy protein LC3/Atg8, which is involved in autophagy membrane trafficking and substrate delivery, is present in the nucleus and directly interacts with the nuclear lamina protein lamin B1, and binds to lamin-associated domains on chromatin. This LC3-lamin B1 interaction does not downregulate lamin B1 during starvation, but mediates its degradation upon oncogenic insults, such as by activated RAS. Lamin B1 degradation is achieved by nucleus-to-cytoplasm transport that delivers lamin B1 to the lysosome. Inhibiting autophagy or the LC3-lamin B1 interaction prevents activated RAS-induced lamin B1 loss and attenuates oncogene-induced senescence in primary human cells. Our study suggests that this new function of autophagy acts as a guarding mechanism protecting cells from tumorigenesis.


Assuntos
Autofagia , Lâmina Nuclear/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Animais , Família da Proteína 8 Relacionada à Autofagia , Transformação Celular Neoplásica , Células Cultivadas , Senescência Celular , Cromatina/química , Cromatina/metabolismo , Citoplasma/metabolismo , Fibroblastos , Células HEK293 , Humanos , Lamina Tipo B/genética , Lamina Tipo B/metabolismo , Lisossomos/metabolismo , Camundongos , Proteínas dos Microfilamentos/metabolismo , Proteínas Associadas aos Microtúbulos/metabolismo , Proteína Oncogênica p21(ras)/metabolismo , Ligação Proteica , Proteólise
13.
Nature ; 525(7568): 206-11, 2015 Sep 10.
Artigo em Inglês | MEDLINE | ID: mdl-26331536

RESUMO

TP53 (which encodes p53 protein) is the most frequently mutated gene among all human cancers. Prevalent p53 missense mutations abrogate its tumour suppressive function and lead to a 'gain-of-function' (GOF) that promotes cancer. Here we show that p53 GOF mutants bind to and upregulate chromatin regulatory genes, including the methyltransferases MLL1 (also known as KMT2A), MLL2 (also known as KMT2D), and acetyltransferase MOZ (also known as KAT6A or MYST3), resulting in genome-wide increases of histone methylation and acetylation. Analysis of The Cancer Genome Atlas shows specific upregulation of MLL1, MLL2, and MOZ in p53 GOF patient-derived tumours, but not in wild-type p53 or p53 null tumours. Cancer cell proliferation is markedly lowered by genetic knockdown of MLL1 or by pharmacological inhibition of the MLL1 methyltransferase complex. Our study reveals a novel chromatin mechanism underlying the progression of tumours with GOF p53, and suggests new possibilities for designing combinatorial chromatin-based therapies for treating individual cancers driven by prevalent GOF p53 mutations.


Assuntos
Cromatina/genética , Cromatina/metabolismo , Mutação/genética , Neoplasias/genética , Neoplasias/patologia , Proteína Supressora de Tumor p53/genética , Proteína Supressora de Tumor p53/metabolismo , Acetilação , Animais , Linhagem Celular Tumoral , Proliferação de Células/genética , Cromatina/química , Feminino , Genes Supressores de Tumor , Genoma Humano/genética , Histona Acetiltransferases/metabolismo , Histona-Lisina N-Metiltransferase/metabolismo , Histonas/química , Histonas/metabolismo , Humanos , Masculino , Camundongos , Proteínas Mutantes/genética , Proteínas Mutantes/metabolismo , Proteína de Leucina Linfoide-Mieloide/metabolismo , Neoplasias/metabolismo , Fenótipo , Ligação Proteica , Processamento de Proteína Pós-Traducional
14.
Mol Cell ; 50(1): 29-42, 2013 Apr 11.
Artigo em Inglês | MEDLINE | ID: mdl-23434372

RESUMO

Autophagy is an evolutionarily conserved membrane trafficking process. Induction of autophagy in response to nutrient limitation or cellular stress occurs by similar mechanisms in organisms from yeast to mammals. Unlike yeast, metazoan cells rely more on growth factor signaling for a wide variety of cellular activities including nutrient uptake. How growth factor availability regulates autophagy is poorly understood. Here we show that, upon growth factor limitation, the p110ß catalytic subunit of the class IA phosphoinositide 3-kinases (PI3Ks) dissociates from growth factor receptor complexes and increases its interaction with the small GTPase Rab5. This p110ß-Rab5 association maintains Rab5 in its guanosine triphosphate (GTP)-bound state and enhances the Rab5-Vps34 interaction that promotes autophagy. p110ß mutants that fail to interact with Rab5 are defective in autophagy promotion. Hence, in mammalian cells, p110ß acts as a molecular sensor for growth factor availability and induces autophagy by activating a Rab5-mediated signaling cascade.


Assuntos
Autofagia , Peptídeos e Proteínas de Sinalização Intercelular/deficiência , Fosfatidilinositol 3-Quinases/metabolismo , Proteínas rab5 de Ligação ao GTP/metabolismo , Animais , Classe I de Fosfatidilinositol 3-Quinases/deficiência , Classe I de Fosfatidilinositol 3-Quinases/genética , Classe III de Fosfatidilinositol 3-Quinases/metabolismo , Guanosina Trifosfato/metabolismo , Células HEK293 , Humanos , Camundongos , Camundongos Knockout , Mutação , Fosfatidilinositol 3-Quinases/deficiência , Fosfatidilinositol 3-Quinases/genética , Transdução de Sinais , Transfecção
15.
Hepatology ; 68(2): 663-676, 2018 08.
Artigo em Inglês | MEDLINE | ID: mdl-29091290

RESUMO

Clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated 9 activation (CRISPRa) systems have enabled genetic screens in cultured cell lines to discover and characterize drivers and inhibitors of cancer cell growth. We adapted this system for use in vivo to assess whether modulating endogenous gene expression levels can result in functional outcomes in the native environment of the liver. We engineered the catalytically dead CRISPR-associated 9 (dCas9)-positive mouse, cyclization recombination-inducible (Cre) CRISPRa system for cell type-specific gene activation in vivo. We tested the capacity for genetic screening in live animals by applying CRISPRa in a clinically relevant model of liver injury and repopulation. We targeted promoters of interest in regenerating hepatocytes using multiple single guide RNAs (gRNAs), and employed high-throughput sequencing to assess enrichment of gRNA sequences during liver repopulation and to link specific gRNAs to the initiation of carcinogenesis. All components of the CRISPRa system were expressed in a cell type-specific manner and activated endogenous gene expression in vivo. Multiple gRNA cassettes targeting a proto-oncogene were significantly enriched following liver repopulation, indicative of enhanced division of cells expressing the proto-oncogene. Furthermore, hepatocellular carcinomas developed containing gRNAs that activated this oncogene, indicative of cancer initiation events. Also, we employed our system for combinatorial cancer genetics in vivo as we found that while clonal hepatocellular carcinomas were dependent on the presence of the oncogene-inducing gRNAs, they were depleted for multiple gRNAs activating tumor suppressors. CONCLUSION: The in vivo CRISPRa platform developed here allows for parallel and combinatorial genetic screens in live animals; this approach enables screening for drivers and suppressors of cell replication and tumor initiation. (Hepatology 2017).


Assuntos
Carcinogênese/genética , Carcinoma Hepatocelular/genética , Repetições Palindrômicas Curtas Agrupadas e Regularmente Espaçadas/genética , Testes Genéticos/métodos , Neoplasias Hepáticas/genética , Animais , Western Blotting , Regulação Neoplásica da Expressão Gênica/genética , Sequenciamento de Nucleotídeos em Larga Escala , Imuno-Histoquímica , Fígado/metabolismo , Fígado/patologia , Camundongos , Oncogenes , RNA Guia de Cinetoplastídeos/metabolismo , Reação em Cadeia da Polimerase em Tempo Real , Ativação Transcricional
17.
Proc Natl Acad Sci U S A ; 113(35): 9822-7, 2016 08 30.
Artigo em Inglês | MEDLINE | ID: mdl-27535933

RESUMO

TP53 (which encodes the p53 protein) is the most frequently mutated gene among all human cancers, whereas tumors that retain the wild-type TP53 gene often use alternative mechanisms to repress the p53 tumor-suppressive function. Testicular teratocarcinoma cells rarely contain mutations in TP53, yet the transcriptional activity of wild-type p53 is compromised, despite its high expression level. Here we report that in the teratocarcinoma cell line NTera2, p53 is subject to lysine methylation at its carboxyl terminus, which has been shown to repress p53's transcriptional activity. We show that reduction of the cognate methyltransferases reactivates p53 and promotes differentiation of the NTera2 cells. Furthermore, reconstitution of methylation-deficient p53 mutants into p53-depleted NTera2 cells results in elevated expression of p53 downstream targets and precocious loss of pluripotent gene expression compared with re-expression of wild-type p53. Our results provide evidence that lysine methylation of endogenous wild-type p53 represses its activity in cancer cells and suggest new therapeutic possibilities of targeting testicular teratocarcinoma.


Assuntos
Regulação Neoplásica da Expressão Gênica , Histona-Lisina N-Metiltransferase/genética , Lisina/metabolismo , Processamento de Proteína Pós-Traducional , Proteína Supressora de Tumor p53/genética , Diferenciação Celular , Linhagem Celular Tumoral , Proliferação de Células , Histona-Lisina N-Metiltransferase/antagonistas & inibidores , Histona-Lisina N-Metiltransferase/metabolismo , Humanos , Masculino , Metilação , Domínios Proteicos , RNA Interferente Pequeno/genética , RNA Interferente Pequeno/metabolismo , Transdução de Sinais , Teratocarcinoma/genética , Teratocarcinoma/metabolismo , Teratocarcinoma/patologia , Neoplasias Testiculares/genética , Neoplasias Testiculares/metabolismo , Neoplasias Testiculares/patologia , Proteína Supressora de Tumor p53/metabolismo
18.
J Cell Sci ; 129(23): 4424-4435, 2016 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-27793976

RESUMO

The class III phosphoinositide 3-kinase (PI3K) Vps34 (also known as PIK3C3 in mammals) produces phosphatidylinositol 3-phosphate [PI(3)P] on both early and late endosome membranes to control membrane dynamics. We used Vps34-deficient cells to delineate whether Vps34 has additional roles in endocytic trafficking. In Vps34-/- mouse embryonic fibroblasts (MEFs), transferrin recycling and EEA1 membrane localization were unaffected despite elevated Rab5-GTP levels. Strikingly, a large increase in Rab7-GTP levels, an accumulation of enlarged late endosomes, and decreased EGFR degradation were observed in Vps34-deficient cells. The hyperactivation of Rab7 in Vps34-deficient cells stemmed from the failure to recruit the Rab7 GTPase-activating protein (GAP) Armus (also known as TBC1D2), which binds to PI(3)P, to late endosomes. Protein-lipid overlay and liposome-binding assays reveal that the putative pleckstrin homology (PH) domain in Armus can directly bind to PI(3)P. Elevated Rab7-GTP led to the failure of intraluminal vesicle (ILV) formation and lysosomal maturation. Rab7 silencing and Armus overexpression alleviated the vacuolization seen in Vps34-deficient cells. Taken together, these results demonstrate that Vps34 has a previously unknown role in regulating Rab7 activity and late endosomal trafficking.


Assuntos
Classe III de Fosfatidilinositol 3-Quinases/metabolismo , Endocitose , Proteínas Ativadoras de GTPase/metabolismo , Proteínas rab de Ligação ao GTP/metabolismo , Animais , Autofagia , Biocatálise , Endossomos/metabolismo , Endossomos/ultraestrutura , Fibroblastos/metabolismo , Células HeLa , Humanos , Lisossomos/metabolismo , Lisossomos/ultraestrutura , Camundongos Knockout , Fosfatos de Fosfatidilinositol/metabolismo , Transporte Proteico , Serina-Treonina Quinases TOR/metabolismo , Vacúolos/metabolismo , Vacúolos/ultraestrutura , proteínas de unión al GTP Rab7
19.
PLoS Genet ; 10(10): e1004626, 2014 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-25275521

RESUMO

Deficiency of autophagy protein beclin 1 is implicated in tumorigenesis and neurodegenerative diseases, but the molecular mechanism remains elusive. Previous studies showed that Beclin 1 coordinates the assembly of multiple VPS34 complexes whose distinct phosphatidylinositol 3-kinase III (PI3K-III) lipid kinase activities regulate autophagy at different steps. Recent evidence suggests a function of beclin 1 in regulating multiple VPS34-mediated trafficking pathways beyond autophagy; however, the precise role of beclin 1 in autophagy-independent cellular functions remains poorly understood. Herein we report that beclin 1 regulates endocytosis, in addition to autophagy, and is required for neuron viability in vivo. We find that neuronal beclin 1 associates with endosomes and regulates EEA1/early endosome localization and late endosome formation. Beclin 1 maintains proper cellular phosphatidylinositol 3-phosphate (PI(3)P) distribution and total levels, and loss of beclin 1 causes a disruption of active Rab5 GTPase-associated endosome formation and impairment of endosome maturation, likely due to a failure of Rab5 to recruit VPS34. Furthermore, we find that Beclin 1 deficiency causes complete loss of the UVRAG-VPS34 complex and associated lipid kinase activity. Interestingly, beclin 1 deficiency impairs p40phox-linked endosome formation, which is rescued by overexpressed UVRAG or beclin 1, but not by a coiled-coil domain-truncated beclin 1 (a UVRAG-binding mutant), Atg14L or RUBICON. Thus, our study reveals the essential role for beclin 1 in neuron survival involving multiple membrane trafficking pathways including endocytosis and autophagy, and suggests that the UVRAG-beclin 1 interaction underlies beclin 1's function in endocytosis.


Assuntos
Proteínas Reguladoras de Apoptose/metabolismo , Classe III de Fosfatidilinositol 3-Quinases/metabolismo , Endossomos/metabolismo , Neurônios/metabolismo , Proteínas Supressoras de Tumor/metabolismo , Animais , Proteínas Reguladoras de Apoptose/genética , Autofagia/genética , Proteína Beclina-1 , Classe III de Fosfatidilinositol 3-Quinases/genética , Endocitose/genética , Receptores ErbB/metabolismo , Células HeLa/metabolismo , Humanos , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Camundongos Endogâmicos C57BL , Camundongos Knockout , Camundongos Transgênicos , Complexos Multiproteicos/genética , Complexos Multiproteicos/metabolismo , Doenças Neurodegenerativas/genética , Doenças Neurodegenerativas/metabolismo , Doenças Neurodegenerativas/patologia , Neurônios/patologia , Fosfatos de Fosfatidilinositol/metabolismo , Proteínas Supressoras de Tumor/genética , Proteínas rab5 de Ligação ao GTP/metabolismo
20.
Proc Natl Acad Sci U S A ; 111(2): E245-54, 2014 Jan 14.
Artigo em Inglês | MEDLINE | ID: mdl-24379373

RESUMO

Innate immunity provides the first line of host defense against invading microbial pathogens. This defense involves retinoic acid-inducible gene-I-like receptors that detect viral RNA and activate the mitochondrial antiviral-signaling (MAVS) protein, an adaptor protein, leading to activation of the innate antiviral immune response. The mechanisms by which the MAVS signalosome assembles on mitochondria are only partially understood. Here, we identify tripartite motif 14 (TRIM14) as a mediator in the immune response against viral infection. TRIM14 localizes to the outer membrane of mitochondria and interacts with MAVS. Upon viral infection, TRIM14 undergoes Lys-63-linked polyubiquitination at Lys-365 and recruits NF-κB essential modulator to the MAVS signalosome, leading to the activation of both the IFN regulatory factor 3 and NF-κB pathways. Knockdown of TRIM14 disrupts the association between NF-κB essential modulator and MAVS and attenuates the antiviral response. Our results indicate that TRIM14 is a component of the mitochondrial antiviral immunity that facilitates the immune response mediated by retinoic acid-inducible gene-I-like receptors.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/imunologia , Proteínas de Transporte/imunologia , Imunidade Inata/genética , Complexos Multiproteicos/metabolismo , Transdução de Sinais/imunologia , Tretinoína/metabolismo , Viroses/imunologia , Proteínas Adaptadoras de Transdução de Sinal/genética , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Proteínas de Transporte/genética , Linhagem Celular , Cromatografia em Gel , Primers do DNA/genética , Humanos , Quinase I-kappa B/metabolismo , Peptídeos e Proteínas de Sinalização Intracelular , Microscopia de Fluorescência , Interferência de RNA , Reação em Cadeia da Polimerase em Tempo Real , Proteínas com Motivo Tripartido
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA