Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Ano de publicação
Tipo de documento
Assunto da revista
País de afiliação
Intervalo de ano de publicação
1.
J Med Internet Res ; 26: e53369, 2024 Aug 08.
Artigo em Inglês | MEDLINE | ID: mdl-39116424

RESUMO

BACKGROUND: Digitization shall improve the secondary use of health care data. The Government of the Kingdom of Saudi Arabia ordered a project to compile the National Master Plan for Health Data Analytics, while the Government of Estonia ordered a project to compile the Person-Centered Integrated Hospital Master Plan. OBJECTIVE: This study aims to map these 2 distinct projects' problems, approaches, and outcomes to find the matching elements for reuse in similar cases. METHODS: We assessed both health care systems' abilities for secondary use of health data by exploratory case studies with purposive sampling and data collection via semistructured interviews and documentation review. The collected content was analyzed qualitatively and coded according to a predefined framework. The analytical framework consisted of data purpose, flow, and sharing. The Estonian project used the Health Information Sharing Maturity Model from the Mitre Corporation as an additional analytical framework. The data collection and analysis in the Kingdom of Saudi Arabia took place in 2019 and covered health care facilities, public health institutions, and health care policy. The project in Estonia collected its inputs in 2020 and covered health care facilities, patient engagement, public health institutions, health care financing, health care policy, and health technology innovations. RESULTS: In both cases, the assessments resulted in a set of recommendations focusing on the governance of health care data. In the Kingdom of Saudi Arabia, the health care system consists of multiple isolated sectors, and there is a need for an overarching body coordinating data sets, indicators, and reports at the national level. The National Master Plan of Health Data Analytics proposed a set of organizational agreements for proper stewardship. Despite Estonia's national Digital Health Platform, the requirements remain uncoordinated between various data consumers. We recommended reconfiguring the stewardship of the national health data to include multipurpose data use into the scope of interoperability standardization. CONCLUSIONS: Proper data governance is the key to improving the secondary use of health data at the national level. The data flows from data providers to data consumers shall be coordinated by overarching stewardship structures and supported by interoperable data custodians.


Assuntos
Atenção à Saúde , Arábia Saudita , Estônia , Humanos , Disseminação de Informação/métodos
2.
Chaos Solitons Fractals ; 141: 110337, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-33071481

RESUMO

While the world has experience with many different types of infectious diseases, the current crisis related to the spread of COVID-19 has challenged epidemiologists and public health experts alike, leading to a rapid search for, and development of, new and innovative solutions to combat its spread. The transmission of this virus has infected more than 18.92 million people as of August 6, 2020, with over half a million deaths across the globe; the World Health Organization (WHO) has declared this a global pandemic. A multidisciplinary approach needs to be followed for diagnosis, treatment and tracking, especially between medical and computer sciences, so, a common ground is available to facilitate the research work at a faster pace. With this in mind, this survey paper aimed to explore and understand how and which different technological tools and techniques have been used within the context of COVID-19. The primary contribution of this paper is in its collation of the current state-of-the-art technological approaches applied to the context of COVID-19, and doing this in a holistic way, covering multiple disciplines and different perspectives. The analysis is widened by investigating Artificial Intelligence (AI) approaches for the diagnosis, anticipate infection and mortality rate by tracing contacts and targeted drug designing. Moreover, the impact of different kinds of medical data used in diagnosis, prognosis and pandemic analysis is also provided. This review paper covers both medical and technological perspectives to facilitate the virologists, AI researchers and policymakers while in combating the COVID-19 outbreak.

3.
Artif Intell Med ; 147: 102745, 2024 01.
Artigo em Inglês | MEDLINE | ID: mdl-38184352

RESUMO

Human accuracy in diagnosing psychiatric disorders is still low. Even though digitizing health care leads to more and more data, the successful adoption of AI-based digital decision support (DDSS) is rare. One reason is that AI algorithms are often not evaluated based on large, real-world data. This research shows the potential of using deep learning on the medical claims data of 812,853 people between 2018 and 2022, with 26,973,943 ICD-10-coded diseases, to predict depression (F32 and F33 ICD-10 codes). The dataset used represents almost the entire adult population of Estonia. Based on these data, to show the critical importance of the underlying temporal properties of the data for the detection of depression, we evaluate the performance of non-sequential models (LR, FNN), sequential models (LSTM, CNN-LSTM) and the sequential model with a decay factor (GRU-Δt, GRU-decay). Furthermore, since explainability is necessary for the medical domain, we combine a self-attention model with the GRU decay and evaluate its performance. We named this combination Att-GRU-decay. After extensive empirical experimentation, our model (Att-GRU-decay), with an AUC score of 0.990, an AUPRC score of 0.974, a specificity of 0.999 and a sensitivity of 0.944, proved to be the most accurate. The results of our novel Att-GRU-decay model outperform the current state of the art, demonstrating the potential usefulness of deep learning algorithms for DDSS development. We further expand this by describing a possible application scenario of the proposed algorithm for depression screening in a general practitioner (GP) setting-not only to decrease healthcare costs, but also to improve the quality of care and ultimately decrease people's suffering.


Assuntos
Aprendizado Profundo , Transtornos Mentais , Adulto , Humanos , Depressão/diagnóstico , Algoritmos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA