Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 28
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Cell Physiol Biochem ; 54(5): 809-824, 2020 Aug 29.
Artigo em Inglês | MEDLINE | ID: mdl-32857934

RESUMO

BACKGROUND/AIMS: High-molecular-weight advanced glycation end-products (HMW-AGEs) are abundantly present in our Western diet. There is growing evidence reporting that HMW-AGEs contribute to the development of cardiovascular dysfunction in vivo, next to the well-known low-molecular-weight AGEs. The goal of our study is to assess the ultrastructure and function of cardiomyocytes after chronic exposure to HMW-AGEs. A better understanding of underlying mechanisms is essential to create new opportunities for further research on the specific role of HMW-AGEs in the development and progression of cardiovascular diseases. METHODS: Adult male rats were randomly assigned to daily intraperitoneal injection for six weeks with either HMW-AGEs (20 mg/kg/day) or a control solution. Hemodynamic measurements were performed at sacrifice. Single cardiomyocytes from the left ventricle were obtained by enzymatic dissociation through retrograde perfusion of the aorta. Unloaded cell shortening, time to peak and time to 50% relaxation were measured during field stimulation and normalized to diastolic length. L-type Ca2+ current density (ICaL) and steady-state inactivation of ICaL were measured during whole-cell ruptured patch clamp. Myofilament functional properties were measured in membrane-permeabilized cardiomyocytes. Ultrastructural examination of cardiac tissue was performed using electron microscopy. RESULTS: Rats injected with HMW-AGEs displayed in vivo cardiac dysfunction, characterized by significant changes in left ventricular peak rate pressure rise and decline accompanied with an increased heart mass. Single cardiomyocytes isolated from the left ventricle revealed concentric hypertrophy, indicated by the increase in cellular width. Unloaded fractional cell shortening was significantly reduced in cells derived from the HMW-AGEs group and was associated with slower kinetics. Peak L-type Ca2+ current density was significantly decreased in the HMW-AGEs group.L-type Ca2+ channel availability was significantly shifted towards more negative potentials after HMW-AGEs injection. The impact of HMW-AGEs on myofilament function was measured in membrane-permeabilized cardiomyocytes showing a reduction in passive force, maximal Ca2+ activated force and rate of force development. Ultrastructural examination of cardiac tissue demonstrated adverse structural remodeling in HMW-AGEs group characterized by a disruption of the cyto-architecture, a decreased mitochondrial density and altered mitochondrial function. CONCLUSION: Our data indicate that HMW-AGEs induce structural and functional cellular remodeling via a different working mechanism as the well-known LMW-AGEs. Results of our research open the door for new strategies targeting HMW-AGEs to improve cardiac outcome.


Assuntos
Acetaldeído/análogos & derivados , Produtos Finais de Glicação Avançada/efeitos adversos , Miócitos Cardíacos/efeitos dos fármacos , Acetaldeído/efeitos adversos , Acetaldeído/metabolismo , Animais , Aorta/fisiopatologia , Doenças Cardiovasculares/fisiopatologia , Diástole/efeitos dos fármacos , Produtos Finais de Glicação Avançada/metabolismo , Cardiopatias/fisiopatologia , Hemodinâmica/efeitos dos fármacos , Masculino , Miócitos Cardíacos/metabolismo , Miócitos Cardíacos/ultraestrutura , Ratos , Ratos Sprague-Dawley , Função Ventricular Esquerda/efeitos dos fármacos , Função Ventricular Esquerda/fisiologia
2.
Am J Physiol Heart Circ Physiol ; 311(5): H1075-H1090, 2016 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-27614227

RESUMO

Scarring and remodeling of the left ventricle (LV) after myocardial infarction (MI) results in ischemic cardiomyopathy with reduced contractile function. Regional differences related to persisting ischemia may exist. We investigated the hypothesis that mitochondrial function and structure is altered in the myocardium adjacent to MI with reduced perfusion (MIadjacent) and less so in the remote, nonischemic myocardium (MIremote). We used a pig model of chronic coronary stenosis and MI (n = 13). Functional and perfusion MR imaging 6 wk after intervention showed reduced ejection fraction and increased global wall stress compared with sham-operated animals (Sham; n = 14). Regional strain in MIadjacent was reduced with reduced contractile reserve; in MIremote strain was also reduced but responsive to dobutamine and perfusion was normal compared with Sham. Capillary density was unchanged. Cardiac myocytes isolated from both regions had reduced basal and maximal oxygen consumption rate, as well as through complex I and II, but complex IV activity was unchanged. Reduced respiration was not associated with detectable reduction of mitochondrial density. There was no significant change in AMPK or glucose transporter expression levels, but glycogen content was significantly increased in both MIadjacent and MIremote Glycogen accumulation was predominantly perinuclear; mitochondria in this area were smaller but only in MIadjacent where also subsarcolemmal mitochondria were smaller. In conclusion, after MI reduction of mitochondrial respiration and glycogen accumulation occur in all LV regions suggesting that reduced perfusion does not lead to additional specific changes and that increased hemodynamic load is the major driver for changes in mitochondrial function.


Assuntos
Cardiomiopatias/metabolismo , Mitocôndrias Cardíacas/metabolismo , Infarto do Miocárdio/metabolismo , Miócitos Cardíacos/metabolismo , Consumo de Oxigênio , Remodelação Ventricular , Proteínas Quinases Ativadas por AMP/genética , Animais , Western Blotting , Cardiomiopatias/diagnóstico por imagem , Cardiomiopatias/etiologia , Cardiomiopatias/patologia , Respiração Celular , Cicatriz , Estenose Coronária/complicações , Complexo I de Transporte de Elétrons/metabolismo , Complexo II de Transporte de Elétrons/metabolismo , Complexo IV da Cadeia de Transporte de Elétrons/metabolismo , Proteínas Facilitadoras de Transporte de Glucose/genética , Glicogênio/metabolismo , Imageamento por Ressonância Magnética , Microscopia Eletrônica , Microscopia de Fluorescência , Infarto do Miocárdio/diagnóstico por imagem , Infarto do Miocárdio/etiologia , Infarto do Miocárdio/patologia , Imagem de Perfusão do Miocárdio , Miócitos Cardíacos/ultraestrutura , RNA Mensageiro/metabolismo , Reação em Cadeia da Polimerase em Tempo Real , Volume Sistólico , Sus scrofa , Suínos
3.
Adv Exp Med Biol ; 951: 199-235, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27837566

RESUMO

Over the past decade, dental tissues have become an attractive source of mesenchymal stem cells (MSCs). Dental stem cells (DSCs) are not only able to differentiate into adipogenic, chondrogenic and osteogenic lineanges, but an increasing amount of research also pointed out their potential applicability in numerous clinical disorders, such as myocardial infarction, neurodegenerative diseases and diabetes. Together with their multilineage differentiation capacity, their easy availability from extracted third molars makes these stem cells a suitable alternative for bone marrow-derived MSCs. More importantly, DSCs appear to retain their stem cell properties following cryopreservation, a key aspect in their long-term preservation and upscale production. However, the vast number of different cryopreservation protocols makes it difficult to draw definite conclusions regarding the behavior of these stem cells. The routine application and banking of DSCs is also associated with some other pitfalls, such as interdonor variability, cell culture-induced changes and the use of animal-derived culture medium additives. Only thorough assessment of these challenges and the implementation of standardized, GMP procedures will successfully lead to better treatment options for patients who no longer benefit from current stem cell therapies.


Assuntos
Bancos de Espécimes Biológicos/organização & administração , Criopreservação/métodos , Polpa Dentária/citologia , Células Secretoras de Insulina/citologia , Miócitos Cardíacos/citologia , Neurônios/citologia , Células-Tronco/citologia , Diferenciação Celular , Proliferação de Células , Crioprotetores/farmacologia , Meios de Cultura/farmacologia , Polpa Dentária/efeitos dos fármacos , Polpa Dentária/fisiologia , Diabetes Mellitus/patologia , Diabetes Mellitus/terapia , Dimetil Sulfóxido/farmacologia , Humanos , Células Secretoras de Insulina/fisiologia , Células Secretoras de Insulina/transplante , Infarto do Miocárdio/patologia , Infarto do Miocárdio/terapia , Miócitos Cardíacos/fisiologia , Miócitos Cardíacos/transplante , Doenças Neurodegenerativas/patologia , Doenças Neurodegenerativas/terapia , Neurônios/fisiologia , Neurônios/transplante , Células-Tronco/efeitos dos fármacos , Células-Tronco/fisiologia
4.
Basic Res Cardiol ; 110(2): 18, 2015 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-25720581

RESUMO

Postconditioning and cyclosporine A prevent mitochondrial permeability transition pore opening providing cardioprotection during ischemia/reperfusion. Whether microvascular obstruction is affected by these interventions is largely unknown. Pigs subjected to coronary occlusion for 1 h followed by 3 h of reperfusion were assigned to control (n = 8), postconditioning (n = 9) or cyclosporine A intravenous infusion 10-15 min before the end of ischemia (n = 8). Postconditioning was induced by 8 cycles of repeated 30-s balloon inflation and deflation. After 3 h of reperfusion magnetic resonance imaging, triphenyltetrazolium chloride/Evans blue staining and histopathology were performed. Microvascular obstruction (MVO, percentage of gadolinium-hyperenhanced area) was measured early (3 min) and late (12 min) after contrast injection. Infarct size with double staining was smaller in cyclosporine (46.2 ± 3.1%, P = 0.016) and postconditioning pigs (47.6 ± 3.9%, P = 0.008) versus controls (53.8 ± 4.1%). Late MVO was significantly reduced by cyclosporine (13.9 ± 9.6%, P = 0.047) but not postconditioning (23.6 ± 11.7%, P = 0.66) when compared with controls (32.0 ± 16.9%). Myocardial blood flow in the late MVO was improved with cyclosporine versus controls (0.30 ± 0.06 vs 0.21 ± 0.03 ml/g/min, P = 0.002) and was inversely correlated with late-MVO extent (R(2) = 0.93, P < 0.0001). Deterioration of left ventricular ejection fraction (LVEF) between baseline and 3 h of reperfusion was smaller with cyclosporine (-7.9 ± 2.4%, P = 0.008) but not postconditioning (-12.0 ± 5.5%, P = 0.22) when compared with controls (-16.4 ± 5.5%). In the three groups, infarct size (ß = -0.69, P < 0.001) and late MVO (ß = -0.33, P = 0.02) were independent predictors of LVEF deterioration following ischemia/reperfusion (R(2) = 0.73, P < 0.001). Despite both cyclosporine A and postconditioning reduce infarct size, only cyclosporine A infusion had a beneficial effect on microvascular damage and was associated with better preserved LV function when compared with controls.


Assuntos
Ciclosporina/farmacologia , Inibidores Enzimáticos/farmacologia , Pós-Condicionamento Isquêmico/métodos , Infarto do Miocárdio/patologia , Traumatismo por Reperfusão Miocárdica/patologia , Animais , Modelos Animais de Doenças , Feminino , Masculino , Infarto do Miocárdio/fisiopatologia , Traumatismo por Reperfusão Miocárdica/fisiopatologia , Traumatismo por Reperfusão Miocárdica/prevenção & controle , Suínos
5.
Europace ; 15(5): 754-60, 2013 May.
Artigo em Inglês | MEDLINE | ID: mdl-23419660

RESUMO

AIMS: Oxidative stress can modulate nitric oxide (NO) signalling pathways. Both pathways have been shown to be involved in the pathophysiology of atrial fibrillation (AF), but data are conflicting. We aimed to characterize the NO-pathway and its relation to oxidative stress in persistent AF in a sheep model. METHODS AND RESULTS: Persistent AF was induced by rapid atrial pacing for a mean of 136.5 ± 21.7 days. Non-stimulated sheep served as controls. Nicotine adenine dinucleotide phosphate (NADPH) oxidase-stimulated superoxide production was significantly increased in the AF group (+51.3 ± 23.2%, P < 0.01). Although there were no changes in mRNA expression of the different NADPH oxidase subunits, the increased activity was associated with markedly increased protein expression of the NADPH oxidase activator, Rac1 (+26 ± 4.6%, P < 0.05). No differences were seen in superoxide dismutase activity, but glutathione peroxidase activity was lower in the AF group. There was a marked accumulation of 3-nitrotyrosine, a biomarker for peroxynitrite, in atrial tissue of AF animals, as demonstrated by immunohistochemical staining and dot blot analysis (+15.6 ± 1.8%, P < 0.05). Expression of atrial NOS3 mRNA was 24.9 ± 4.4% lower in the AF group vs. control (P < 0.05), while NOS1 and 2 were unchanged. Immunoblot analysis revealed no changes in protein expression. Nitrite/nitrate levels were significantly lower during AF (-24.8 ± 5.8%, P < 0.05). CONCLUSION: In a sheep model of persistent AF, NOS3 transcript levels are attenuated and circulating NOx levels decreased. Persistent AF is associated with increased oxidative stress, probably resulting from increased NADPH oxidase activity, without major changes in anti-oxidant capacity of the atrial tissue.


Assuntos
Fibrilação Atrial/metabolismo , Óxido Nítrico Sintase/metabolismo , Óxido Nítrico/metabolismo , Estresse Oxidativo , Espécies Reativas de Oxigênio/metabolismo , Animais , Doença Crônica , Feminino , Ovinos
6.
J Endod ; 49(8): 1058-1072, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37315781

RESUMO

INTRODUCTION: Understanding the healing process of dental pulp after tooth autotransplantation (TAT) and regenerative endodontic treatment (RET) of immature teeth is important both clinically and scientifically. This study aimed to characterize the pattern of dental pulp healing in human teeth that underwent TAT and RET using state-of-the-art imaging techniques. MATERIALS AND METHODS: This study examined 4 human teeth, 2 premolars that underwent TAT, and 2 central incisors that received RET. The premolars were extracted after 1 year (case 1) and 2 years (case 2) due to ankylosis, while the central incisors were extracted after 3 years (cases 3 and 4) for orthodontic reasons. Nanofocus x-ray computed tomography was used to image the samples before being processed for histological and immunohistochemical analysis. Laser scanning confocal second harmonic generation imaging (SHG) was used to examine the patterns of collagen deposition. A maturity-matched premolar was included as a negative control for the histological and SHG analysis. RESULTS: Analysis of the 4 cases revealed different patterns of dental pulp healing. Similarities were observed in the progressive obliteration of the root canal space. However, a striking loss of typical pulpal architecture was observed in the TAT cases, while a pulp-like tissue was observed in one of the RET cases. Odontoblast-like cells were observed in cases 1 and 3. CONCLUSIONS: This study provided insights into the patterns of dental pulp healing after TAT and RET. The SHG imaging sheds light on the patterns of collagen deposition during reparative dentin formation.


Assuntos
Polpa Dentária , Endodontia Regenerativa , Humanos , Polpa Dentária/diagnóstico por imagem , Regeneração , Endodontia Regenerativa/métodos , Transplante Autólogo , Necrose da Polpa Dentária/diagnóstico por imagem , Necrose da Polpa Dentária/terapia , Colágeno , Imagem Multimodal
7.
iScience ; 25(2): 103822, 2022 Feb 18.
Artigo em Inglês | MEDLINE | ID: mdl-35198884

RESUMO

Age-related fibrosis in the left ventricle (LV) has been mainly studied in animals by assessing collagen content. Using second-harmonic generation microscopy and image processing, we evaluated amount, aggregation and spatial distribution of LV collagen in young to old pigs, and middle-age and elder living donors. All collagen features increased when comparing adult and old pigs with young ones, but not when comparing adult with old pigs or middle-age with elder individuals. Remarkably, all collagen parameters strongly correlated with lipofuscin, a biological age marker, in humans. By building patient-specific models of human ventricular tissue electrophysiology, we confirmed that amount and organization of fibrosis modulated arrhythmia vulnerability, and that distribution should be accounted for arrhythmia risk assessment. In conclusion, we characterize the age-associated changes in LV collagen and its potential implications for ventricular arrhythmia development. Consistency between pig and human results substantiate the pig as a relevant model of age-related LV collagen dynamics.

9.
Circ Res ; 105(9): 876-85, 2009 Oct 23.
Artigo em Inglês | MEDLINE | ID: mdl-19762679

RESUMO

RATIONALE: Persistent atrial fibrillation (AF) has been associated with structural and electric remodeling and reduced contractile function. OBJECTIVE: To unravel mechanisms underlying reduced sarcoplasmic reticulum (SR) Ca(2+) release in persistent AF. METHODS: We studied cell shortening, membrane currents, and [Ca(2+)](i) in right atrial myocytes isolated from sheep with persistent AF (duration 129+/-39 days, N=16), compared to matched control animals (N=21). T-tubule density, ryanodine receptor (RyR) distribution, and local [Ca(2+)](i) transients were examined in confocal imaging. RESULTS: Myocyte shortening and underlying [Ca(2+)](i) transients were profoundly reduced in AF (by 54.8% and 62%, P<0.01). This reduced cell shortening could be corrected by increasing [Ca(2+)](i). SR Ca(2+) content was not different. Calculated fractional SR Ca(2+) release was reduced in AF (by 20.6%, P<0.05). Peak Ca(2+) current density was modestly decreased (by 23.9%, P<0.01). T-tubules were present in the control atrial myocytes at low density and strongly reduced in AF (by 45%, P<0.01), whereas the regular distribution of RyR was unchanged. Synchrony of SR Ca(2+) release in AF was significantly reduced with increased areas of delayed Ca(2+) release. Propagation between RyR was unaffected but Ca(2+) release at subsarcolemmal sites was reduced. Rate of Ca(2+) extrusion by Na(+)/Ca(2+) exchanger was increased. CONCLUSIONS: In persistent AF, reduced SR Ca(2+) release despite preserved SR Ca(2+) content is a major factor in contractile dysfunction. Fewer Ca(2+) channel-RyR couplings and reduced efficiency of the coupling at subsarcolemmal sites, possibly related to increased Na(+)/Ca(2+) exchanger, underlie the reduction in Ca(2+) release.


Assuntos
Fibrilação Atrial/metabolismo , Função do Átrio Direito , Sinalização do Cálcio , Contração Miocárdica , Miócitos Cardíacos/metabolismo , Retículo Sarcoplasmático/metabolismo , Citoesqueleto de Actina/metabolismo , Animais , Fibrilação Atrial/patologia , Fibrilação Atrial/fisiopatologia , Canais de Cálcio Tipo L/metabolismo , Modelos Animais de Doenças , Técnicas Eletrofisiológicas Cardíacas , Feminino , Glicogênio/metabolismo , Átrios do Coração/metabolismo , Átrios do Coração/patologia , Átrios do Coração/fisiopatologia , Potenciais da Membrana , Miócitos Cardíacos/ultraestrutura , Canal de Liberação de Cálcio do Receptor de Rianodina/metabolismo , Sarcolema/metabolismo , Retículo Sarcoplasmático/ultraestrutura , Ovinos , Trocador de Sódio e Cálcio/metabolismo , Fatores de Tempo
10.
Front Cell Dev Biol ; 9: 665600, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34026757

RESUMO

The apical papilla is a stem cell rich tissue located at the base of the developing dental root and is responsible for the progressive elongation and maturation of the root. The multipotent stem cells of the apical papilla (SCAP) are extensively studied in cell culture since they demonstrate a high capacity for osteogenic, adipogenic, and chondrogenic differentiation and are thus an attractive stem cell source for stem cell-based therapies. Currently, only few studies are dedicated to determining the role of the apical papilla in dental root development. In this review, we will focus on the architecture of the apical papilla and describe the specific SCAP signaling pathways involved in root maturation. Furthermore, we will explore the heterogeneity of the SCAP phenotype within the tissue and determine their micro-environmental interaction. Understanding the mechanism of postnatal dental root growth could further aid in developing novel strategies in dental root regeneration.

11.
Sci Rep ; 10(1): 12220, 2020 07 22.
Artigo em Inglês | MEDLINE | ID: mdl-32699285

RESUMO

Growing evidence supports the role of advanced glycation end products (AGEs) in the development of diabetic vascular complications and cardiovascular diseases (CVDs). We have shown that high-molecular-weight AGEs (HMW-AGEs), present in our Western diet, impair cardiac function. Whether HMW-AGEs affect vascular function remains unknown. In this study, we aimed to investigate the impact of chronic HMW-AGEs exposure on vascular function and structure. Adult male Sprague Dawley rats were daily injected with HMW-AGEs or control solution for 6 weeks. HMW-AGEs animals showed intracardiac pressure overload, characterized by increased systolic and mean pressures. The contraction response to PE was increased in aortic rings from the HMW-AGEs group. Relaxation in response to ACh, but not SNP, was impaired by HMW-AGEs. This was associated with reduced plasma cyclic GMP levels. SOD restored ACh-induced relaxation of HMW-AGEs animals to control levels, accompanied by a reduced half-maximal effective dose (EC50). Finally, collagen deposition and intima-media thickness of the aortic vessel wall were increased with HMW-AGEs. Our data demonstrate that chronic HMW-AGEs exposure causes adverse vascular remodelling. This is characterised by disturbed vasomotor function due to increased oxidative stress and structural changes in the aorta, suggesting an important contribution of HMW-AGEs in the development of CVDs.


Assuntos
Acetaldeído/análogos & derivados , Aorta/metabolismo , Aorta/fisiopatologia , Pressão Sanguínea/fisiologia , Coração/fisiopatologia , Remodelação Vascular/fisiologia , Acetaldeído/metabolismo , Acetilcolina/farmacologia , Animais , Aorta/efeitos dos fármacos , Pressão Sanguínea/efeitos dos fármacos , Doenças Cardiovasculares/metabolismo , Doenças Cardiovasculares/fisiopatologia , Colágeno/metabolismo , GMP Cíclico/metabolismo , Endotélio Vascular/efeitos dos fármacos , Endotélio Vascular/metabolismo , Endotélio Vascular/fisiopatologia , Produtos Finais de Glicação Avançada/metabolismo , Coração/efeitos dos fármacos , Masculino , Oxirredução/efeitos dos fármacos , Estresse Oxidativo/efeitos dos fármacos , Estresse Oxidativo/fisiologia , Ratos , Ratos Sprague-Dawley , Superóxido Dismutase/metabolismo , Remodelação Vascular/efeitos dos fármacos , Vasoconstrição/efeitos dos fármacos , Vasoconstrição/fisiologia , Vasodilatação/efeitos dos fármacos , Vasodilatação/fisiologia
12.
Front Pharmacol ; 11: 268, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32231569

RESUMO

BACKGROUND AND PURPOSE: Up to 50-60% of all cancer patients receive radiotherapy as part of their treatment strategy. However, the mechanisms accounting for increased vascular risks after irradiation are not completely understood. Mitochondrial dysfunction has been identified as a potential cause of radiation-induced atherosclerosis. MATERIALS AND METHODS: Assays for apoptosis, cellular metabolism, mitochondrial DNA content, functionality and morphology were used to compare the response of endothelial cells to a single 2 Gy dose of X-rays under basal conditions or after pharmacological treatments that either reduced (EtBr) or increased (rosiglitazone) mitochondrial content. RESULTS: Exposure to ionizing radiation caused a persistent reduction in mitochondrial content of endothelial cells. Pharmacological reduction of mitochondrial DNA content rendered endothelial cells more vulnerable to radiation-induced apoptosis, whereas rosiglitazone treatment increased oxidative metabolism and redox state and decreased the levels of apoptosis after irradiation. CONCLUSION: Pre-existing mitochondrial damage sensitizes endothelial cells to ionizing radiation-induced mitochondrial dysfunction. Rosiglitazone protects endothelial cells from the detrimental effects of radiation exposure on mitochondrial metabolism and oxidative stress. Thus, our findings indicate that rosiglitazone may have potential value as prophylactic for radiation-induced atherosclerosis.

13.
J Cell Mol Med ; 13(5): 896-908, 2009 May.
Artigo em Inglês | MEDLINE | ID: mdl-19538254

RESUMO

Differentiation of foetal cardiomyocytes is accompanied by sequential actin isoform expression, i.e. down-regulation of the 'embryonic' alpha smooth muscle actin, followed by an up-regulation of alpha skeletal actin (alphaSKA) and a final predominant expression of alpha cardiac actin (alphaCA). Our objective was to detect whether re-expression of alphaSKA occurred during cardiomyocyte dedifferentiation, a phenomenon that has been observed in different pathologies characterized by myocardial dysfunction. Immunohistochemistry of alphaCA, alphaSKA and cardiotin was performed on left ventricle biopsies from human patients after coronary bypass surgery. Furthermore, actin isoform expression was investigated in left ventricle samples of rabbit hearts suffering from pressure- and volume-overload and in adult rabbit ventricular cardiomyocytes during dedifferentiation in vitro. Atrial goat samples up to 16 weeks of sustained atrial fibrillation (AF) were studied ultrastructurally and were immunostained for alphaCA and alphaSKA. Up-regulation of alphaSKA was observed in human ventricular cardiomyocytes showing down-regulation of alphaCA and cardiotin. A patchy re-expression pattern of alphaSKA was observed in rabbit left ventricular tissue subjected to pressure- and volume-overload. Dedifferentiating cardiomyocytes in vitro revealed a degradation of the contractile apparatus and local re-expression of alphaSKA. Comparable alphaSKA staining patterns were found in several areas of atrial goat tissue during 16 weeks of AF together with a progressive glycogen accumulation at the same time intervals. The expression of alphaSKA in adult dedifferentiating cardiomyocytes, in combination with PAS-positive glycogen and decreased cardiotin expression, offers an additional tool in the evaluation of myocardial dysfunction and indicates major changes in the contractile properties of these cells.


Assuntos
Actinas/metabolismo , Desdiferenciação Celular/fisiologia , Miócitos Cardíacos/metabolismo , Miócitos Cardíacos/patologia , Actinina/metabolismo , Animais , Insuficiência da Valva Aórtica/metabolismo , Insuficiência da Valva Aórtica/patologia , Fibrilação Atrial/metabolismo , Fibrilação Atrial/patologia , Biomarcadores/metabolismo , Células Cultivadas , Doença da Artéria Coronariana/metabolismo , Doença da Artéria Coronariana/patologia , Regulação para Baixo/fisiologia , Feminino , Glicogênio/metabolismo , Cabras , Humanos , Miocárdio Atordoado/metabolismo , Miocárdio Atordoado/patologia , Isoformas de Proteínas/metabolismo , Coelhos , Regulação para Cima/fisiologia
14.
Sci Rep ; 9(1): 8879, 2019 06 20.
Artigo em Inglês | MEDLINE | ID: mdl-31222006

RESUMO

After myocardial infarction, resident fibroblasts (Fb) differentiate towards myofibroblasts (MyoFb), generating the scar tissue and the interstitial fibrosis seen in the adjacent myocardium. Fb and MyoFb have the potential to interact with cardiac myocytes (CMs) but insight into the phenotype-specific role and mode of interaction is still incomplete. Our objectives are to further define the modulation of CMs by MyoFbs compared to Fbs, as well as the role of direct contact through gap junctions vs. soluble mediators, using Fbs and CMs from pig left ventricle. Fbs were treated to maintain an undifferentiated state (SD-208) or to attain full differentiation to MyoFb (TGF-ß1). Fbs and MyoFbs were co-cultured with CMs, with the possibility of direct contact or separated by a Thincert membrane. Only in direct co-culture, both Fbs and MyoFbs were able to decrease CM viability after 2 days. Only MyoFbs induced significant distal spreading of CMs in both direct and indirect co-culture. MyoFbs, but not Fbs, readily made connections with CMs in direct co-culture and connexin 43 expression in MyoFb was higher than in Fb. When coupled to CMs, MyoFbs reduced the CM action potential duration and hyperpolarized the CM resting membrane potential. Uncoupling reversed these effects. In conclusion, MyoFbs, but not Fbs, alter the CM structural phenotype. MyoFbs, but not Fbs, are likely to electrically connect to CMs and thereby modulate the CM membrane potential. These data provide further support for an active role of MyoFbs in the arrhythmogenic substrate after cardiac remodelling.


Assuntos
Miócitos Cardíacos/citologia , Miofibroblastos/citologia , Animais , Diferenciação Celular , Técnicas de Cocultura , Membranas Artificiais , Suínos , Fator de Crescimento Transformador beta1/metabolismo
15.
Front Cell Dev Biol ; 7: 389, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-32039205

RESUMO

Fibroblast activation protein-α (FAPα) is a membrane protein with dipeptidyl-peptidase and type I collagenase activity and is expressed during fetal growth. At the age of adolescence, FAPα expression is greatly reduced, only emerging in pathologies associated with extracellular matrix remodeling. We determined whether FAPα is expressed in human dental tissue involved in root maturation i.e., dental follicle and apical papilla and in dental pulp tissue. The dental follicle revealed a high concentration of FAPα and vimentin-positive cells within the stromal tissue. A similar observation was made in cell culture and FACS analysis confirmed these as dental follicle stem cells. Within the remnants of the Hertwigs' epithelial root sheath, we observed FAPα staining in the E-cadherin positive and vimentin-negative epithelial islands. FAPα- and vimentin-positive cells were encountered at the periphery of the islands suggesting an epithelial mesenchymal transition process. Analysis of the apical papilla revealed two novel histological regions; the periphery with dense and parallel aligned collagen type I defined as cortex fibrosa and the inner stromal tissue composed of less compacted collagen defined as medulla. FAPα expression was highly present within the medulla suggesting a role in extracellular matrix remodeling. Dental pulp tissue uncovered a heterogeneous FAPα staining but strong staining was noted within odontoblasts. In vitro studies confirmed the presence of FAPα expression in stem cells of the apical papilla and dental pulp. This study identified the expression of FAPα expression in dental stem cells which could open new perspectives in understanding dental root maturation and odontoblast function.

16.
J Am Coll Cardiol ; 73(18): 2267-2282, 2019 05 14.
Artigo em Inglês | MEDLINE | ID: mdl-31072570

RESUMO

BACKGROUND: Interstitial fibrosis is an important component of diastolic, and systolic, dysfunction in heart failure (HF) and depends on activation and differentiation of fibroblasts into myofibroblasts (MyoFb). Recent clinical evidence suggests that in late-stage HF, fibrosis is not reversible. OBJECTIVES: The study aims to examine the degree of differentiation of cardiac MyoFb in end-stage HF and the potential for their phenotypic reversibility. METHODS: Fibroblasts were isolated from the left ventricle of the explanted hearts of transplant recipients (ischemic and dilated cardiomyopathy), and from nonused donor hearts. Fibroblasts were maintained in culture without passaging for 4 or 8 days (treatment studies). Phenotyping included functional testing, immunostaining, and expression studies for markers of differentiation. These data were complemented with immunohistology and expression studies in tissue samples. RESULTS: Interstitial fibrosis with cross-linked collagen is prominent in HF hearts, with presence of activated MyoFbs. Tissue levels of transforming growth factor (TGF)-ß1, lysyl oxidase, periostin, and osteopontin are elevated. Fibroblastic cells isolated from HF hearts are predominantly MyoFb, proliferative or nonproliferative, with mature α-smooth muscle actin stress fibers. HF MyoFb express high levels of profibrotic cytokines and the TGF-ß1 pathway is activated. Inhibition of TGF-ß1 receptor kinase in HF MyoFb promotes dedifferentiation of MyoFb with loss of α-smooth muscle actin and depolymerization of stress fibers, and reduces the expression of profibrotic genes and cytokines levels to non-HF levels. CONCLUSION: MyoFb in end-stage HF have a variable degree of differentiation and retain the capacity to return to a less activated state, validating the potential for developing antifibrotic therapy targeting MyoFb.


Assuntos
Fibroblastos , Insuficiência Cardíaca , Miocárdio , Miofibroblastos , Moléculas de Adesão Celular/análise , Diferenciação Celular , Células Cultivadas , Progressão da Doença , Fibroblastos/metabolismo , Fibroblastos/patologia , Fibrose , Insuficiência Cardíaca/metabolismo , Insuficiência Cardíaca/patologia , Humanos , Imuno-Histoquímica , Miocárdio/metabolismo , Miocárdio/patologia , Miofibroblastos/metabolismo , Miofibroblastos/patologia , Osteopontina/análise , Proteína-Lisina 6-Oxidase/análise , Transdução de Sinais , Fator de Crescimento Transformador beta1/análise , Disfunção Ventricular/etiologia , Disfunção Ventricular/metabolismo , Disfunção Ventricular/patologia
17.
J Endod ; 44(6): 956-962.e2, 2018 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-29606400

RESUMO

INTRODUCTION: Compelling evidence pinpoints that pulp tissue engineering after the transplantation of stem cells is possible. Although intriguing, severe problems regarding clinical feasibility remain. Cell homing has been proposed as a viable alternative in which dentin-derived growth factors in a conducive scaffold may attract resident cells to form pulplike tissue. In this study, an ectopic animal model for in situ dental pulp tissue engineering was developed to evaluate whether pulplike tissue formation in empty root canals after the attraction of stem cells was possible and whether this could be enhanced by dentin-derived growth factors. METHODS: Three types of fibrin (custom-made fibrin, fibrin sealant, and plasma rich in growth factors [PRGF]) as well as a self-assembling peptide were evaluated in vivo in a modified tooth root model using human teeth. Root canal dentin was conditioned with EDTA, tooth roots were filled with growth factor-laden scaffolds, and dental pulp stem cells in collagen were placed at the root tip. Constructs were implanted into immunocompromised mice for 4 weeks and subsequently analyzed histologically. Differential interference contrast and second harmonic generation imaging were performed for selected sections. RESULTS: For custom-made fibrin and fibrin sealant with dentin matrix proteins, migration into the roots and the formation of a pulplike tissue were observed, whereas the peptide-based scaffold appeared less suitable. PRGF supported tissue formation regardless of the addition of dentin matrix proteins. In the test groups with dentin matrix proteins and EDTA conditioning, differentiated odontoblastlike cells extended cellular processes into the dentinal tubules, which coincided with the deposition of the newly formed collagenous dentin matrix. CONCLUSIONS: This new cell homing model provides evidence that fibrin derivatives make applicable scaffolds and that dentin-derived proteins induce chemotaxis and pulplike tissue formation.


Assuntos
Polpa Dentária/fisiologia , Dentina/metabolismo , Proteínas da Matriz Extracelular/uso terapêutico , Endodontia Regenerativa/métodos , Engenharia Tecidual/métodos , Adulto , Animais , Movimento Celular , Polpa Dentária/metabolismo , Feminino , Humanos , Masculino , Camundongos , Camundongos Endogâmicos , Alicerces Teciduais , Raiz Dentária/fisiologia
18.
J Heart Lung Transplant ; 37(1): 151-160, 2018 01.
Artigo em Inglês | MEDLINE | ID: mdl-29056459

RESUMO

BACKGROUND: Mechanical right ventricular (RV) support in pulmonary arterial hypertension patients has been feared to cause pulmonary hemorrhage and to be detrimental for the after-load-sensitive RV. Continuous low-flow pumps offer promise but remain insufficiently tested. METHODS: The pulmonary artery was banded in 20 sheep in this study. Eight weeks later, a Synergy micro-pump (HeartWare International, Framingham MA) was inserted in 10 animals, driving blood from the right atrium to the pulmonary artery. After magnetic resonance imaging, hemodynamics and RV pressure-volume loop data were recorded. Eight weeks later, RV function was assessed in the same way, followed by histologic analysis of the ventricular tissue. RESULTS: During the 8 weeks of support, RV volumes and central venous pressure decreased significantly, whereas RV contractility increased. Pulmonary artery pressure increased modestly, particularly its diastolic component. RV contribution to total right-sided cardiac output increased from 12 ± 12% to 41 ± 9% (p < 1 × 10-4). After pump inactivation, and compared with 8 weeks earlier, RV volumes had significantly decreased, tricuspid valve regurgitation had almost disappeared, and RV contractility had significantly increased, resulting in significantly increased RV forward power (0.25 ± 0.05 vs 0.16 ± 0.06 W, p = 0.014). Fulton index and RV myocyte size were significantly smaller, and without changes in fibrosis, when compared with controls. CONCLUSIONS: Prolonged continuous low-flow RV mechanical support significantly unloads the chronic pressure-overloaded RV and improves cardiac output. After 8 weeks, RV hemodynamic recovery and reverse remodeling begin to occur, without increased fibrosis.


Assuntos
Coração Auxiliar , Disfunção Ventricular Direita/fisiopatologia , Disfunção Ventricular Direita/cirurgia , Remodelação Ventricular , Animais , Doença Crônica , Feminino , Ovinos
19.
Sci Rep ; 7(1): 16010, 2017 11 22.
Artigo em Inglês | MEDLINE | ID: mdl-29167580

RESUMO

Advanced glycation end products (AGEs) play a key role in the progression of heart failure. Whether treatments limiting AGEs formation would prevent adverse left ventricular remodeling after myocardial infarction (MI) remain unknown. We investigated whether pyridoxamine (PM) could limit adverse cardiac outcome in MI. Rats were divided into MI, MI + PM and Sham. Echocardiography and hemodynamic parameters were used to assess cardiac function 8 weeks post-surgery. Total interstitial collagen, collagen I and collagen III were quantified using Sirius Red and polarized light microscopy. PM improved survival following LAD occlusion. Pre-treatment with PM significantly decreased the plasma AGEs levels. MI rats treated with PM displayed reduced left ventricular end-diastolic pressure and tau compared to untreated MI rats. Deformation parameters were also improved with PM. The preserved diastolic function was related to the reduced collagen content, in particular in the highly cross-linked collagen type I, mainly in the peri-infarct region, although not via TGF-ß1 pathway. Our data indicate that PM treatment prevents the increase in AGEs levels and reduces collagen levels in a rat model of MI, resulting in an improved cardiac phenotype. As such, therapies targeting formation of AGEs might be beneficial in the prevention and/or treatment of maladaptive remodeling following MI.


Assuntos
Infarto do Miocárdio/tratamento farmacológico , Infarto do Miocárdio/mortalidade , Piridoxamina/uso terapêutico , Animais , Ecocardiografia , Produtos Finais de Glicação Avançada/metabolismo , Hemodinâmica/fisiologia , Masculino , Infarto do Miocárdio/metabolismo , Ratos , Ratos Sprague-Dawley , Fator de Crescimento Transformador beta1/metabolismo , Disfunção Ventricular Esquerda/tratamento farmacológico , Disfunção Ventricular Esquerda/fisiopatologia , Remodelação Ventricular/efeitos dos fármacos
20.
J Endod ; 43(9S): S12-S16, 2017 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-28781091

RESUMO

Dental pulp is a highly vascularized and innervated tissue containing a heterogeneous stem cell population with multilineage differentiation potential. Current endodontic treatments focus on the preservation of the pulp tissue and the regeneration of dental pulp after pathological insults. Human dental pulp stem cells (hDPSCs) are currently investigated as stem cell-based therapy for pulp regeneration and for peripheral nerve injury in which neurons and Schwann cells display limited regenerative capacity. We have developed a neuronal differentiation protocol for hDPSCs that requires neurosphere formation before neuronal maturation. Moreover, Schwann cell differentiation of hDPSCs in our group revealed that differentiated hDPSCs have acquired the ability to myelinate and guide neurites from dorsal root ganglia. Besides their dynamic differentiation capacity, hDPSCs were shown to exert a paracrine effect on neural and endothelial cells. Analysis of hDPSC conditioned medium revealed the secretion of a broad spectrum of growth factors including brain-derived neurotrophic factor, nerve growth factor, vascular endothelial growth factor, and glial-derived neurotrophic factor. Application of the conditioned medium to endothelial cells promoted cell migration and tubulogenesis, indicating a paracrine proangiogenic effect. This hypothesis was enforced by the enhanced formation of blood vessels in the chorioallantoic membrane assay in the presence of hDPSCs. In addition, transplantation of 3-dimensional-printed hydroxyapatite scaffolds containing peptide hydrogels and hDPSCs into immunocompromised mice revealed blood vessel ingrowth, pulplike tissue formation, and osteodentin deposition suggesting osteogenic/odontogenic differentiation of hDPSCs. Future studies in our research group will focus on the pulp regeneration capacity of hDPSCs and the role of fibroblasts within the pulp extracellular matrix.


Assuntos
Polpa Dentária/citologia , Polpa Dentária/fisiologia , Neovascularização Fisiológica , Neurogênese , Células-Tronco/fisiologia , Engenharia Tecidual/métodos , Alicerces Teciduais , Animais , Diferenciação Celular , Humanos , Regeneração
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA