Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 34
Filtrar
1.
Ecol Lett ; 23(10): 1488-1498, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-32808477

RESUMO

Floral plantings are promoted to foster ecological intensification of agriculture through provisioning of ecosystem services. However, a comprehensive assessment of the effectiveness of different floral plantings, their characteristics and consequences for crop yield is lacking. Here we quantified the impacts of flower strips and hedgerows on pest control (18 studies) and pollination services (17 studies) in adjacent crops in North America, Europe and New Zealand. Flower strips, but not hedgerows, enhanced pest control services in adjacent fields by 16% on average. However, effects on crop pollination and yield were more variable. Our synthesis identifies several important drivers of variability in effectiveness of plantings: pollination services declined exponentially with distance from plantings, and perennial and older flower strips with higher flowering plant diversity enhanced pollination more effectively. These findings provide promising pathways to optimise floral plantings to more effectively contribute to ecosystem service delivery and ecological intensification of agriculture in the future.


Assuntos
Ecossistema , Polinização , Agricultura , Abelhas , Biodiversidade , Europa (Continente) , Flores , Nova Zelândia , América do Norte , Controle de Pragas
2.
Oecologia ; 185(1): 13-26, 2017 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-28730344

RESUMO

Past studies have shown that taxa from disparate groups often respond similarly to reduced reproductive effort. These common responses imply that high reproductive effort trades off with a consistent set of other life functions for most angiosperms, albeit modulated by their growth form and life history. However, many questions remain about reproductive trade-offs in plants, including just how many other life functions they involve, how diverse these functions may be, and how the severity of these trade-offs may vary through time. To address these questions in a long-lived, iteroparous shrub, we performed flower removal on plots of lowbush blueberry, Vaccinium angustifolium (Ericaceae), over 3 years. We found significant physiological differences between removal and control plots for ten diverse traits. Vegetative phenology was shifted earlier by about 20% in removal plots, and removal plots had about 15% more vegetative biomass by mid-season as well. Removal plots produced about 10% more ripe fruit per reproductive node by harvest than control plots, and reproductive nodes in removal plots produced at least one fruit by harvest about 6% more often. While fruit water content and titratable acidity were increased by removal, other fruit traits, such as sugar content and fresh mass, were not. The strength of the removal effect varied significantly by year for seven traits; for many, such as vegetative mass/stem and ripe fruit production/node, the effect was stronger in years with more stressful abiotic conditions. Our results demonstrate that there are tangible but variable costs to high reproductive effort for flowering plants.


Assuntos
Mirtilos Azuis (Planta)/fisiologia , Flores/fisiologia , Frutas/crescimento & desenvolvimento , Biomassa , Caules de Planta , Reprodução/fisiologia , Estações do Ano , Sementes
3.
J Econ Entomol ; 106(2): 716-26, 2013 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-23786059

RESUMO

Assessing the influence of new, reduced-risk insecticides on natural enemies within agroecosystems is essential to developing integrated pest management strategies. Three species of mound-building Formica ants are abundant throughout Maine lowbush blueberry fields (Formica exsectoides Forel, F. glacialis Wheeler, and F. ulkei Emery). All three species have been described in the literature as predaceous, with research demonstrating that F. exsectoides preys on major pest insects of lowbush blueberry. The objectives of this study were to determine the impact of common-use and newly introduced insecticides on Formica sp. ant communities in lowbush blueberry fields. Laboratory assays indicated that the commonly applied insecticide phosmet is toxic to F. exsectoides, even after 8 d of field weathering (P < 0.05). Species comparisons indicated that susceptibility varied with exposure to residues in the field. However, some of the reduced-risk biorational insecticides, such as acetamiprid, had little effect on survival of all three species. Abundance of each species in the field varied with lowbush blueberry pesticide-use strategy and amount of nonblueberry vegetation. Both F. exsectoides and F. glacialis were most abundant in organic fields; however, overall F. glacialis was the most abundant in fields of all management types. Field surveys support laboratory results suggesting that phosmet is highly toxic to these species and influences their spatial pattern. Manipulation of the crop to conserve natural enemies in lowbush blueberry is difficult because the crop is not planted; therefore, we must look closely at the incorporation of low toxicity insecticides with natural enemies to efficiently control pest insects.


Assuntos
Formigas/efeitos dos fármacos , Biota , Mirtilos Azuis (Planta) , Inseticidas/farmacologia , Animais , Maine , Dinâmica Populacional
5.
Insects ; 12(6)2021 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-34198744

RESUMO

A two-year study was conducted in Maine wild blueberry fields (Vaccinium angustifolium Aiton) on the health of migratory honey bee colonies in 2014 and 2015. In each year, three or five colonies were monitored at each of nine wild blueberry field locations during bloom (mid-May until mid-June). Colony health was measured by assessing colony strength during wild blueberry bloom. Potential factors that might affect colony health were queen failure or supersedure; pesticide residues on trapped pollen, wax comb, and bee bread; and parasites and pathogens. We found that Varroa mite and pesticide residues on trapped pollen were significant predictors of colony health measured as the rate of change in the amount of sealed brood during bloom. These two factors explained 71% of the variance in colony health over the two years. Pesticide exposure was different in each year as were pathogen prevalence and incidence. We detected high prevalence and abundance of two recently discovered pathogens and one recently discovered parasite, the trypanosome Lotmaria passim Schwartz, the Sinai virus, and the phorid fly, Apocephalus borealis Brues.

6.
Environ Entomol ; 50(6): 1344-1357, 2021 12 17.
Artigo em Inglês | MEDLINE | ID: mdl-34498038

RESUMO

Global declines of bumble bees place natural and agricultural ecosystems at risk. Given bumble bees importance to Maine's major agricultural crops, we conducted a statewide, quantitative survey of bumble bee species seasonal and ecoregional abundance, richness, diversity, and floral resource use. We recorded 11 Bombus species at 40 survey sites across Maine's three ecoregions, with Bombus ternarius Cresson, 1863 and Bombus impatiens Cresson, 1863 being the most common and Bombus citrinus Smith, 1854 the least commonly encountered. Bumble bee species richness did not differ as a function of ecoregion, but did decline over the season, while species diversity differed by ecoregion and also declined over the season. Multiple response permutation procedure (MRPP) indicated ecoregional differences in species composition of bumble bee assemblages and nonmetric multidimensional scaling produced a stable ordination suggesting assemblage differences were associated with survey site variables including forage plant cover, forage plant richness, elevation, development, and deciduous forest cover. Both MRPP and correspondence analysis also revealed differences in the floral resources utilized by bumble bee species in each ecoregion. Low connectance and nestedness levels indicated low stability pollinator networks in each ecoregion, suggesting Maine bumble bee assemblages may be at risk of decline in response to additional external perturbations.


Assuntos
Himenópteros , Animais , Abelhas , Ecossistema , Maine , Polinização , Estações do Ano
7.
Environ Entomol ; 50(6): 1358-1369, 2021 12 17.
Artigo em Inglês | MEDLINE | ID: mdl-34532731

RESUMO

As part of a quantitative survey of Maine's bumble bee fauna (Butler et al. 2021), we compared and contrasted genetic diversity, parasite and pathogen burdens, and pesticide exposure of the relatively common Bombus ternarius Say, 1937 and the spatially rare Bombus terricola Kirby, 1837. We recorded 11 Bombus species at 40 survey sites across three Maine ecoregions, and B. ternarius was the most common species, while B. terricola was spatially rare. Nonmetric multidimensional scaling indicated that B. terricola was associated with higher elevation sites in Maine, while B. ternarius was more broadly distributed in the state. Pollinator networks constructed for each bee indicated B. ternarius foraged on more plant species than B. terricola, but that there was considerable overlap (73%) in plant species visited. Genetic diversity was greater in the spatially restricted B. terricola, whereas the widely distributed B. ternarius was characterized by greater genetic differentiation among regions. Bombus terricola had higher molecular marker levels of the microsporidian fungi Nosema spp. and the trypanosome Crithidia spp., and both species had high levels of Trypanosoma spp. exposure. No Western Honey Bee (Apis mellifera, Linnaeus, 1758) viruses were detected in either species. Pesticides were not detected in pollen samples collected from workers of either species, and B. ternarius worker tissue samples exhibited only trace levels of diflubenzuron.


Assuntos
Himenópteros , Praguicidas , Animais , Abelhas/genética , Crithidia , Maine , Pólen
8.
G3 (Bethesda) ; 11(12)2021 12 08.
Artigo em Inglês | MEDLINE | ID: mdl-34599814

RESUMO

Drosophila suzukii, or spotted-wing drosophila, is now an established pest in many parts of the world, causing significant damage to numerous fruit crop industries. Native to East Asia, D. suzukii infestations started in the United States a decade ago, occupying a wide range of climates. To better understand invasion ecology of this pest, knowledge of past migration events, population structure, and genetic diversity is needed. In this study, we sequenced whole genomes of 237 individual flies collected across the continental United States, as well as several sites in Europe, Brazil, and Asia, to identify and analyze hundreds of thousands of genetic markers. We observed strong population structure between Western and Eastern US populations, but no evidence of any population structure between different latitudes within the continental United States, suggesting that there are no broad-scale adaptations occurring in response to differences in winter climates. We detect admixture from Hawaii to the Western United States and from the Eastern United States to Europe, in agreement with previously identified introduction routes inferred from microsatellite analysis. We also detect potential signals of admixture from the Western United States back to Asia, which could have important implications for shipping and quarantine policies for exported agriculture. We anticipate this large genomic dataset will spur future research into the genomic adaptations underlying D. suzukii pest activity and development of novel control methods for this agricultural pest.


Assuntos
Drosophila , Metagenômica , Animais , Drosophila/genética , Frutas , Marcadores Genéticos , Genômica , Estados Unidos
9.
J Econ Entomol ; 113(5): 2380-2389, 2020 10 16.
Artigo em Inglês | MEDLINE | ID: mdl-32841348

RESUMO

Rhagoletis mendax Curran (the blueberry maggot fly) is a major pest of wild blueberry. It is a direct pest of the fruit. Females lay eggs in fruit resulting in infestations of larvae unacceptable to most consumers. Three field perimeter interception tactics were tested for control of R. mendax in wild blueberry, Vaccinium angustifolium Aiton (Ericales: Ericaceae), between 2000 and 2010. We investigated field perimeter deployment of baited, insecticide-treated, green spheres (2000-2005), baited, yellow Trécé PHEROCON AM traps (2005 and 2006), and baited, Hopper Finder, sticky barrier tape (2008-2010). Only the Hopper Finder tape provided significant reduction in R. mendax adults and fruit infestation over the 3-yr field study. However, the reduction in fruit infestation compared with control plots was only 48.2 ± 7.3%, a level of reduction in damage that would be unsuitable for many commercial wild blueberry growers as a stand-alone tactic, but could be an important reduction as part of a multiple tactic IPM strategy. In addition, we constructed an agent-based computer simulation model to assess optimal trap placement between three patterns: 1) a single row of traps along field perimeter; 2) a double row of traps along the field perimeter at half the density of the single row; and 3) a grid of traps spread throughout the field but with the largest distance between traps. We found that the single row deployment pattern of traps was the best for reducing immigration of R. mendax adults into simulated fields.


Assuntos
Mirtilos Azuis (Planta) , Dípteros , Inseticidas , Tephritidae , Animais , Simulação por Computador , Feminino , Controle de Insetos , Larva
10.
J Econ Entomol ; 113(4): 1609-1617, 2020 08 13.
Artigo em Inglês | MEDLINE | ID: mdl-32409819

RESUMO

Spearmint oil, peppermint oil, neem oil, and d-limonene were tested as nest site repellents against the colonization of the invasive European red ant, Myrmica rubra (L.) in both laboratory and field trials. In a laboratory assay, a 10% (v/v) solution of each extract repelled M. rubra colonies from nesting in plant pots filled with moist soil compared to water-treated controls, when applied as a dip to pots. Extracts also repelled colonies compared to a water control in a second laboratory experiment, where pots were dipped 15 d prior to the start of the experiment. In a 2008 field comparison, 20 plant pots, filled with moist potting soil, were dipped in either 10% (v/v) spearmint oil or peppermint oil, 70% (v/v) neem oil, or a water control and left in infested sites. Seven control pots were colonized over 3 mo, while none of the extract-treated pots were colonized. This field trial was repeated for a 15-wk duration in 2009 with the addition of a 10% (v/v) d-limonene solution as a treatment, and a change in neem oil concentration to 10% (v/v). Spearmint and peppermint oils repelled M. rubra colonies for the duration of the experiment. Neem oil and d-limonene repelled colonies for 3 and 4 wk, respectively. These extracts, especially mint oils, show potential as low-hazard repellents against M. rubra in greenhouse and nursery settings, and could reduce the number of new infestations incurred by the transport of plant stock.


Assuntos
Formigas , Repelentes de Insetos , Mentha spicata , Óleos Voláteis , Animais , Extratos Vegetais
11.
J Econ Entomol ; 113(2): 720-730, 2020 04 06.
Artigo em Inglês | MEDLINE | ID: mdl-31813980

RESUMO

Between 1998 and 2017, we conducted studies in wild blueberry, Vaccinium angustifolium Aiton (Ericales: Ericaceae), to elucidate the temporal dynamics of the blueberry maggot fly, Rhagoletis mendax Curran, and its parasitoid, Biosteres melleus (Gahan). A predictive model for the emergence of R. mendax was validated at two sites over 3 yr. A second predictive model for the major parasitoid, B. melleus, of R. mendax was constructed and suggests that the delay in emergence of the parasitoid relative to its host provides a period or 'biological window' of 9 d where insecticide sprays can be applied to manage R. mendax with a limited impact on the parasitoid. A 20-yr study on the parasitoid/host dynamics showed parasitism rates ranging from 0.5 to 28.2%. It appears that R. mendax populations in Maine wild blueberry are characterized by stable equilibrium dynamics, significantly affected by stochastic processes. There was a weak, but significant relationship between B. melleus density and R. mendax intrinsic rates of growth. Our data suggest that R. mendax population dynamics in wild blueberry is characterized by an unstable equilibrium tipping point of 7.9 maggots per liter of blueberries or an average of 10 flies per trap.


Assuntos
Mirtilos Azuis (Planta) , Dípteros , Himenópteros , Tephritidae , Animais , Larva , Maine
12.
J Econ Entomol ; 113(2): 851-859, 2020 04 06.
Artigo em Inglês | MEDLINE | ID: mdl-31819967

RESUMO

Between 1996 and 2003 field studies were conducted in wild blueberry, Vaccinium angustifolium Aiton (Ericales: Ericaceae) to determine action thresholds for the blueberry maggot fly, Rhagoletis mendax Curran (Diptera: Tephritidae). Thresholds were based upon cumulative fly trap captures on baited Pherocon AM traps. The cumulative numbers of R. mendax flies captured over time was a significant predictor of infested fruit levels (maggots/liter blueberries). Fifty percent of the variance in fruit infestation is explained by fly captures. Based upon this relationship, the University of Maine Cooperative Extension has recommended action threshold of 10 cumulative fly captures/trap. However, this threshold is liberal in terms of risk as only 50% of the variance in fruit infestation is explained by fly captures. The dynamics of colonization rate and fly physiological status entering fruit-bearing fields might partially explain the variance in the action threshold. The majority of flies emerge from pruned fields or along forest scrub/shrub field edges, and it takes between 1 and 10 d (mean = 4.1 ± 0.9 d) for the populations to enter adjacent fruit-bearing fields. Flies dispersed from pruned fields at a decreasing rate the farther they dispersed. The rate of dispersal into fruit-bearing wild blueberry fields also depends upon the overwintering site quality. Sites with fruit exhibited both delayed colonization and lower colonization rates into fruit-bearing fields than adjacent pruned fields with no fruit. We also found that as the season progressed the proportion of flies capable of laying eggs varied greatly by location and year.


Assuntos
Mirtilos Azuis (Planta) , Dípteros , Tephritidae , Animais , Frutas , Controle de Insetos , Larva , Maine
13.
Environ Entomol ; 49(3): 726-737, 2020 06 13.
Artigo em Inglês | MEDLINE | ID: mdl-32270187

RESUMO

Bee reservoirs can be effective in agricultural and habitat restoration projects, but the relative attractiveness of plants is not fully understood. To improve plant selection with better knowledge of spatial, temporal, and competition aspects, we tested up to 90 plant subjects from 2012 to 2015 at four sites in Maine. We recognized Apis mellifera L., Bombus ternarius Say, 1837, 'Most Bombus' (except B. ternarius), 'Halictidae' and 'Other Bees' (collectively the so-called 'bee groups') on open flowers in three 1-min periods per site and day, with numerous repeated observations per plant taxon. In 14,311 observations, we recorded 17,792 bees in 61 species. Most-visited plants included Asclepias tuberosa, Borago officinalis, Clethra alnifolia cv. Hummingbird (especially by A. mellifera), Melilotus officinalis, Origanum vulgare, Rosa palustris (especially before 1400 hours), Spiraea alba var. latifolia, and taxa in the family Asteraceae. Early-flowering shrubs were visited, especially by 'Other Bees'. Bee groups each ranked plants uniquely, with some overlap, and differed in most-visited of six plant taxa that we had included in all 4 yr and sites. For 'All Bees' among 84 plant taxa, the most-visited plants were M. officinalis (June), A. tuberosa (July), and C. alnifolia (August). Indicator Species Analysis revealed low bee fidelity to host plants for all but a few plant taxa. Apis mellifera differed from native bees in plants it visited intensively, with some overlap (e.g., A. tuberosa), and was associated with increased visitation on seven plant taxa by 'Most Bombus' and B. ternarius.


Assuntos
Asclepias , Polinização , Animais , Abelhas , Flores , Maine , Plantas
14.
Environ Entomol ; 49(3): 738-752, 2020 06 13.
Artigo em Inglês | MEDLINE | ID: mdl-32270192

RESUMO

In a common garden study in Maine from 2012 to 2015, we used two bee species (Apis mellifera L. and Bombus ternarius Say (1837)) and three field-recognizable bee categories ('Most Bombus', 'Halictidae', and 'Other Bees') plus an 'All Bees' data aggregation to compare 17 native and 68 introduced plant taxa. Data were from three 1-min timed periods per flowering plant taxon on a given day at a site. We observed 17,792 bees and found that their response varied by bee species or group. Using mixed models to analyze our data, we found that native bees had higher visitation rates on native plants, while A. mellifera visited both native and introduced plants. Most groups visited native late-flowering and native mid-late-flowering plants at higher rates. 'All Bees' were attracted to native perennials (vs annuals and shrubs) and to tall plants, both native and introduced; A. mellifera was attracted to introduced perennials, to introduced tall plants, and to lower-growing native plants. Asclepias tuberosa L. elicited a strong response from B. ternarius. In only two of six pairs of wild types and cultivars, bees visited wild types more. Plants with long bloom periods and with small, densely arranged white flowers attracted higher bee visitation than did other configurations (e.g., Origanum vulgare L., one of our most attractive taxa). A general linear model showed that linear combinations of flower density, floral resource height, flower corolla depth, and flowering duration explained significant variation in visitation rates for each of the different bee taxa groups.


Assuntos
Magnoliopsida , Polinização , Animais , Abelhas , Flores , Genes de Plantas , Maine , Estados Unidos
15.
Environ Entomol ; 49(2): 502-515, 2020 04 14.
Artigo em Inglês | MEDLINE | ID: mdl-31965153

RESUMO

Homogeneous, agriculturally intense landscapes have abundant records of pollinator community research, though similar studies in the forest-dominated, heterogeneous mixed-use landscape that dominates the northeastern United States are sparse. Trends of landscape effects on wild bees are consistent across homogeneous agricultural landscapes, whereas reported studies in the northeastern United States have not found this consistency. Additionally, the role of noncrop habitat in mixed-use landscapes is understudied. We assessed wild bee communities in the mixed-use lowbush blueberry (Vaccinium angustifolium Ait.) production landscape of Maine, United States at 56 sites in eight land cover types across two regional landscapes and analyzed effects of floral resources, landscape pattern, and spatial scale on bee abundance and species richness. Within survey sites, cover types with abundant floral resources, including lowbush blueberry fields and urban areas, promoted wild bee abundance and diversity. Cover types with few floral resources such as coniferous and deciduous/mixed forest reduced bee abundance and species richness. In the surrounding landscape, lowbush blueberry promoted bee abundance and diversity, while emergent wetland and forested land cover strongly decreased these measures. Our analysis of landscape configuration revealed that patch mixing can promote wild bee abundance and diversity; however, this was influenced by strong variation across our study landscape. More surveys at intra-regional scales may lead to better understanding of the influence of mixed-use landscapes on bee communities.


Assuntos
Mirtilos Azuis (Planta) , Himenópteros , Agricultura , Animais , Abelhas , Ecossistema , Maine , Polinização
16.
J Econ Entomol ; 113(3): 1323-1336, 2020 06 06.
Artigo em Inglês | MEDLINE | ID: mdl-32207827

RESUMO

During dispersal into fruit-bearing wild blueberry fields, blueberry maggot flies were highly active during all daylight hours as revealed by trap captures, although in one trial afternoon activity was greater than morning activity. Flies were not captured in traps at night, although observations in growth chambers showed that their activity at night, measured as displacement of position, was equal to daylight conditions. Flies were shown to fly at low altitude, just above the crop canopy, and screen fencing was shown to be effective at reducing colonization of plots, presumably due to their low height during flight. Over a 4-yr mark-capture study, colonization rate was shown to be low at 9.7 m/d, although a separate 2010 study showed higher rates at 14.1 and 28.0 m/d. Movement was shown to be nondirectional or random in the field, but a constrained random walk exhibiting direction into the field. Weed cover and high fruit density were associated with higher fly relative abundance, suggesting these field characteristics served as attractors slowing colonization rate into a field. Transect trap studies showed the temporal and spatial pattern of fly colonization into commercial wild blueberry fields, one of a slow wave that penetrates into the field interior as the season progresses. There is also an increase in fly abundance within-field edges and adjacent forest. The 'stacking' of flies along a field edge and slow movement rate into a field was shown through simulation to be a result of nondirectional short-distance dispersal of flies.


Assuntos
Mirtilos Azuis (Planta) , Dípteros , Tephritidae , Animais , Florestas , Frutas , Controle de Insetos
17.
J Econ Entomol ; 113(3): 1262-1269, 2020 06 06.
Artigo em Inglês | MEDLINE | ID: mdl-31943106

RESUMO

Drosophila suzukii (Matsumura), or spotted wing drosophila, has become a major pest concern for berry growers in the United States. In this study, we evaluated the economic impacts of D. suzukii on the Maine wild blueberry industry from two perspectives. The first analysis estimated the state-level economic impacts of D. suzukii on the wild blueberry industry in Maine in the absence of control. We found that D. suzukii could result in drastic revenue losses to the industry, which could be over $6.8 million under the worst-case scenario (assuming a 30% yield reduction). In the second analysis, we used Monte Carlo simulation to compare the expected revenues under different management strategies for a typical wild blueberry farm in Maine. The analysis focused on a decision-making week during the harvesting season, which the grower can choose in between three control strategies: no-control, early harvest, or insecticide application. The results suggested that insecticide applications are not economically optimal in most low infestation risk scenarios. Furthermore, although the early harvest strategy is one of the strategies to avoid D. suzukii infestations for wild blueberry production in Maine, the tradeoff is the revenue loss from the unripe crop. Using the simulation results, we summarized optimal harvest timing regarding the fruit maturity level under different D. suzukii infestation risk scenarios, which can minimize the revenue loss from adopting the early harvest management strategy.


Assuntos
Mirtilos Azuis (Planta) , Inseticidas , Animais , Drosophila , Controle de Insetos , Maine
18.
Environ Entomol ; 48(6): 1369-1376, 2019 12 02.
Artigo em Inglês | MEDLINE | ID: mdl-31713600

RESUMO

Common St. John's wort, Hypericum perforatum L. (Malpighiales: Hypericaceae), is a weed in Maine wild blueberry fields. A survey of its presence and relative density in 55 wild blueberry fields was conducted from 2013 to 2016. The objectives of this study were to determine how widespread it is as a weed in wild blueberry and whether it might indirectly contribute to beneficial ecosystem services for wild blueberry. It was found that St. John's wort occurs in about half (45.5%) of all wild blueberry fields surveyed. The crop cycle (prune vs cropping year) affected its relative abundance, significantly less St. John's wort was found in prune fields. St. John's wort relative abundance in wild blueberry fields was not affected by farming system (conventional vs organic) or landscape surrounding blueberry fields. Geographical distribution modeling was performed using the software Maxent. In Maine, the most likely areas predicted to be infested with St. John's wort were the two major blueberry production regions: Mid-coast and Downeast, Maine. Insects associated with St. John's wort were diverse. This weed appears to be under considerable herbivore pressure, especially hemipterans and Chrysolina spp. (Coleoptera: Chrysomelidae) beetles that have been released for biological control. Insect predators and parasitoids were abundant and may not only reduce herbivory on St. John's wort but may also provide a valuable ecosystem service in terms of predator spillover, resulting in reduction of wild blueberry insect pests. Bumble bees (Bombus spp., Hymenoptera, Apidae) are the most efficient pollinator of blueberry and were the predominant bee taxa found foraging on the flowers.


Assuntos
Mirtilos Azuis (Planta) , Clusiaceae , Hypericum , Espécies Introduzidas , Animais , Abelhas , Ecossistema , Maine , Malpighiales
19.
J Econ Entomol ; 112(3): 1151-1161, 2019 05 22.
Artigo em Inglês | MEDLINE | ID: mdl-30835789

RESUMO

Blueberry gall midge, Dasineura oxycoccana (Johnson) (Diptera: Cecidomyiidae), is an emerging pest on wild blueberry, Vaccinium angustifolium Aiton (Ericales: Ericaceae). The purpose of this study was to document the population increase of blueberry gall midge on this crop in Maine since its discovery in 2003 until 2018. Dasineura oxycoccana appears to have three generations during the prune cycle in Maine wild blueberry, although this may vary among years. Prune fields have higher infestation rates than crop fields, most likely due to the greater abundance of susceptible leaf tissue. Production system does affect infestation rates. Fields managed under a high input system exhibit lower gall midge infestation than low or medium input fields. Field infestation rates in organic fields were intermediate to high input and low and medium input fields. In seven trials conducted between 2010 and 2017, D. oxycoccana infestation of stems resulted in significantly fewer flower-bud clusters developed at the end of the prune year in four of seven trials and significantly fewer viable flowers during bloom in the crop year in four of seven trials. Two of the seven trials resulted in significantly more flowers on infested stems than noninfested stems, evidence that in some years D. oxycoccana infestation may stimulate flower-bud production, resulting in an increase in potential yield. We provide an optimal sampling plan for D. oxycoccana infestation sampling and economic thresholds for three levels of production (yield levels) and three expected prices that growers might receive.


Assuntos
Mirtilos Azuis (Planta) , Dípteros , Ericaceae , Ericales , Animais , Maine
20.
J Econ Entomol ; 112(4): 1623-1633, 2019 08 03.
Artigo em Inglês | MEDLINE | ID: mdl-30927545

RESUMO

Over a period of 5 yr (2012-2016), we conducted laboratory and field studies on activity, movement, and response to trap placement of adult Drosophila suzukii (Matsumura) in wild blueberry, Vaccinium angustifolium Aiton, fields in Maine. When measuring temporal patterns in fruit infestation, we found that D. suzukii females are most active in the morning and that they are 10 times more likely to lay eggs in blueberries at the top of the plant canopy compared with berries located in the lower part of the bush. Flies were found to be more abundant in fruit-bearing (crop) fields compared with pruned (vegetative) fields based on trap capture of adults. They are also most abundant along edges of fields compared with interiors. Trap efficiency is significantly better in traps 1.2 m above the ground and above the crop canopy of this low-growing crop plant than within the crop canopy. Three experiments involving the marking of laboratory-reared flies with fluorescent marker, their release, and capture with traps along a grid in fields suggest that: 1) fluorescent markers do not affect the distance moved of marked flies, 2) dispersal rates are not different between sexes, 3) there is little difference in the dispersal pattern through pruned fields and fruit-bearing fields, and 4) flies disperse at a low rate of 0.1-30 m per day, with an average of 5 m per day, but that long-distance dispersal over 1-2 km is feasible based on statistical model extrapolation.


Assuntos
Mirtilos Azuis (Planta) , Ericaceae , Ericales , Animais , Drosophila , Feminino , Maine , Oviposição
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA