Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Langmuir ; 39(11): 3951-3966, 2023 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-36877867

RESUMO

It is of great significance to study shale apparent permeability under the action of multiple flow mechanisms and factors because shale reservoirs possess complex pore structures and flow mechanisms. In this study, the confinement effect was considered, with the thermodynamic properties of gas being modified, and the law relating to the conservation of energy adopted to characterize bulk gas transport velocity. On this basis, the dynamic change of pore size was assessed, from which shale apparent permeability model was derived. The new model was verified by three steps: experimental and molecular simulation results of rarefied gas transport, shale laboratory data, and comparison with different models. The results revealed that, under the conditions of low pressure and small pore size, the microscale effects became obvious, which significantly improved gas permeability. Through comparisons, the effects of surface diffusion and matrix shrinkage, including the real gas effect, were obvious in the smaller pore sizes; nevertheless, the stress sensitivity effect was stronger in larger pore sizes. In addition, shale apparent permeability and pore size decreased with an increase in permeability material constant and increased with increasing porosity material constant, including internal swelling coefficient. The permeability material constant had the greatest effect on gas transport behavior in nanopores, followed by the porosity material constant; however, the internal swelling coefficient had the least effect. The results of this paper will be important for the prediction and numerical simulation of apparent permeability relating to shale reservoirs.

2.
Molecules ; 26(16)2021 Aug 18.
Artigo em Inglês | MEDLINE | ID: mdl-34443590

RESUMO

Biocompatible skin wound dressing materials with long-term therapeutic windows and anti-infection properties have attracted great attention all over the world. The cooperation between essential oil and non-toxic or bio-based polymers was a promising strategy. However, the inherent volatility and chemical instability of most ingredients in essential oils make the sustained pharmacological activity of essential oil-based biomaterials a challenge. In this study, a kind of film nanocomposite loaded with patchouli essential oil (PEO-FNC) was fabricated. PEO-loaded mesoporous silica nanoparticles (PEO-MSNs) with drug load higher than 40 wt% were firstly prepared using supercritical CO2 cyclic impregnation (SCCI), and then combined with the film matrix consisting of polyvinyl alcohol and chitosan. The morphology of PEO-MSNs and PEO-FNC was observed by transmission and scanning electron microscope. The mechanical properties, including hygroscopicity, tensile strength and elongation at break (%), were tested. The release behavior of PEO from the film nanocomposite showed that PEO could keep releasing for more than five days. PEO-FNC exhibited good long-term (>48 h) antibacterial effect on Staphylococcus aureus and non-toxicity on mouse fibroblast (L929 cells), making it a promising wound dressing material.


Assuntos
Bandagens/microbiologia , Dióxido de Carbono/química , Nanocompostos/química , Óleos Voláteis/química , Óleos Voláteis/farmacologia , Pogostemon/química , Cicatrização/efeitos dos fármacos , Animais , Antibacterianos/química , Antibacterianos/farmacologia , Camundongos , Staphylococcus aureus/efeitos dos fármacos
3.
Curr Drug Deliv ; 19(1): 41-48, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35135460

RESUMO

INTRODUCTION: The amentoflavone (AMF) loaded polymeric sub-micron particles were prepared using supercritical antisolvent (SAS) technology with the aim of improving the anticancer activity of AMF. METHODS: Zein and phospholipid mixtures composed of Hydrogenated Phosphatidylcholine (HPC) and egg lecithin (EPC) were used as carrier materials and, the effects of carrier composition on the product morphology and drug release behavior were investigated. When the mass ratio of Zein/HPC/ EPC was 7/2/1, the AMF loaded particles were spherical shape and sub-micron sized around 400 nm, with a drug load of 4.3±0.3 w% and entrapment efficacy of 87.8±1.8%. The in vitro drug release assay showed that adding EPC in the wall materials could improve the dispersion stability of the released AMF in an aqueous medium, and the introduction of HPC could accelerate the drug release speed. RESULTS: MTT assay demonstrated that AMF-loaded micron particles have an improved inhibitory effect on A375 cells, whose IC50 was 37.39µg/ml, compared with that of free AMF(130.2µg/ml). CONCLUSION: It proved that the AMF loaded sub-micron particles prepared by SAS were a prospective strategy to improve the antitumor activity of AMF, and possibly promote the clinical use of AMF preparations.


Assuntos
Biflavonoides , Biflavonoides/farmacologia , Liberação Controlada de Fármacos , Tamanho da Partícula , Polímeros , Estudos Prospectivos
4.
Pharmaceutics ; 12(2)2020 Feb 18.
Artigo em Inglês | MEDLINE | ID: mdl-32085384

RESUMO

Antimicrobial medicine and food packages based on bio-based film containing essential oils have attracted great attention worldwide. However, the controlled release of essential oils from these film nanocomposites is still a big challenge. In this study, a long-term antibacterial film nanocomposite composed of zein film and cinnamon essential oil (CEO) loaded MCM-41 silica nanoparticles was prepared. The CEO was loaded into MCM-41 particles via modified supercritical impregnation efficiently with a high drug load (>40 wt%). The morphologies of the prepared nanoparticles and film nanocomposite were characterized by a scanning electron microscope. The release behaviors of CEO under different temperatures, high humidity, continuous illumination and in phosphate buffer solution (PBS) solution were investigated. The results showed that the film nanocomposite had an outstanding release-control effect. The addition of MCM-41 nanoparticles also improved the mechanical properties of zein films. The antibacterial effect of CEO was significantly prolonged by the film nanocomposite; indicating the CEO film nanocomposite fabricated via modified supercritical CO2 impregnation was a potential long-term antibacterial medicine or food package material.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA