Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
BMC Cardiovasc Disord ; 23(1): 448, 2023 09 11.
Artigo em Inglês | MEDLINE | ID: mdl-37697243

RESUMO

BACKGROUND: The development of new-onset atrial fibrillation (NOAF) after acute myocardial infarction (AMI) is a clinical complication that requires a better understanding of the causative risk factors. This study aimed to explore the risk factors and the expression and function of miR-1 and miR-133a in new atrial fibrillation after AMI. METHODS: We collected clinical data from 172 patients with AMI treated with emergency percutaneous coronary intervention (PCI) between October 2021 and October 2022. Independent predictors of NOAF were determined using binary logistic univariate and multivariate regression analyses. The predictive value of NOAF was assessed using the area under the receiver operating characteristic (ROC) curve for related risk factors. In total, 172 venous blood samples were collected preoperatively and on the first day postoperatively; the expression levels of miR-1 and miR-133a were determined using the polymerase chain reaction. The clinical significance of miR-1 and miR-133a expression levels was determined by Spearman correlation analysis. RESULTS: The Glasgow prognostic score, left atrial diameter, and infarct area were significant independent risk factors for NOAF after AMI. We observed that the expression levels of miR-1 and miR-133a were significantly higher in the NOAF group than in the non-NOAF group. On postoperative day 1, strong associations were found between miR-133a expression levels and the neutrophil ratio and between miR-1 expression levels and an increased left atrial diameter. CONCLUSIONS: Our findings indicate that the mechanism of NOAF after AMI may include an inflammatory response associated with an increased miR-1-related mechanism. Conversely, miR-133a could play a protective role in this clinical condition.


Assuntos
Apêndice Atrial , Fibrilação Atrial , MicroRNAs , Infarto do Miocárdio , Intervenção Coronária Percutânea , Humanos , Fibrilação Atrial/etiologia , Fibrilação Atrial/genética , MicroRNAs/genética , Infarto do Miocárdio/diagnóstico , Infarto do Miocárdio/genética , Intervenção Coronária Percutânea/efeitos adversos
2.
Biol Pharm Bull ; 40(10): 1638-1645, 2017 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-28747591

RESUMO

Curcumae Longae Rhizoma (Curcuma longa L.) is an important traditional Chinese medicine with multiple beneficial effects. To elucidate the genetic and chemical differences among Curcumae Longae Rhizoma samples, three DNA barcoding markers (rbcL, matK, and ITS-LSU D1/D3) and HPLC fingerprinting were employed in this study. The discriminatory power of rbcL and matK was low, as they only detected one sequence type that showed 100% similarity with more than 20 congeneric species in the Barcode of Life Data Systems (BOLD) database. In contrast, ITS-LSU D1/D3 showed sufficient discriminatory power to precisely identify all of the market samples as C. longa L. in a BLAST search as well as differentiate each sample based on 2-10 ITS-LSU D1/D3 haplotypes with intragenomic variability (mean p-distance: 0.7%, range: 0-2.6%; mean number of differences: 9.6 sites, range: 0-38 sites). HPLC fingerprinting of 13 commercial samples showed a similarity that ranged from 0.769 to 0.996, indicating that the sample quality varied. A cluster analysis based on 5 common peak areas from the HPLC chromatogram resulted in two groups. Group I included 9 samples with a relatively high chemical content, and group II contained 4 samples with a low chemical content. A Mantel test revealed a low correlation (r=0.1721, p=0.047) between genetic and chemical differences. Our findings suggest that the integrated approach of ITS-LSU D1/D3 DNA barcoding and HPLC fingerprinting provides a comprehensive, precise, and convenient method to clarify the genetic and chemical differences in Curcumae Longae Rhizoma.


Assuntos
Curcuma/química , Curcuma/genética , Código de Barras de DNA Taxonômico , Cromatografia Líquida de Alta Pressão/métodos , Análise por Conglomerados , Medicamentos de Ervas Chinesas/química , Extratos Vegetais/química , Extratos Vegetais/genética , Rizoma/química , Rizoma/genética
3.
Gene ; 909: 148288, 2024 May 30.
Artigo em Inglês | MEDLINE | ID: mdl-38367854

RESUMO

Plant mitochondrial genomes participate in encoding proteins crucial to the major producers of ATP in the cell and replication and heredity of their own DNA. The sequences and structure of the plant mitochondrial genomes profoundly impact these fundamental processes, and studies of plant mitochondrial genomes are needed. We reported the complete sequences of the Rhodomyrtus tomentosa mitochondrial genome here, totaling 400,482 bp. Nanopore ONT reads and PCR amplification provided evidence for recombination mediated by the eight repeat pairs for the R. tomentosa mitochondrial genome. Thirty-eight genes were identified in the R. tomentosa mitochondrial genome. Comparative analyses of the mitochondrial genome and plastome and PCR amplification suggest that five fragments of mitochondrial plastid DNA were unfunctional sequences resulting from intracellular gene transfer. Phylogenetic analysis based on each and all of the 27 mitochondrial protein-coding genes of nine Myrtales species revealed that R. tomentosa always clustered with other species of Myrtaceae. This study uncovered the enormous complexity of the R. tomentosa mitochondrial genome, the active repeat-mediated recombinations, the presence of mitochondrial plastid DNAs, and the topological incongruence of Myrtales among the single-gene trees.


Assuntos
Genoma Mitocondrial , Myrtaceae , Filogenia , Genoma Mitocondrial/genética , Plantas , DNA Mitocondrial/genética , Recombinação Genética
4.
Genes (Basel) ; 13(5)2022 05 08.
Artigo em Inglês | MEDLINE | ID: mdl-35627224

RESUMO

In the present study, we depicted the complete mitochondrial genome of a valuable medicinal plant, Vitex rotundifolia. The mitochondrial genome of V. rotundifolia, mapped as a circular molecule, spanned 380,980 bp in length and had a GC content of 45.54%. The complete genome contained 38 protein-coding genes, 19 transfer RNAs (tRNAs), and 3 ribosomal RNAs (rRNAs). We found that there were only 38.73% (147.54 kb), 36.28% (138.23 kb), and 52.22% (198.96 kb) of the homologous sequences in the mitochondrial genome of V. rotundifolia, as compared with the mitochondrial genomes of Scutellaria tsinyunensis, Boea hygrometrica, and Erythranthe lutea, respectively. A multipartite structure mediated by the homologous recombinations of the three direct repeats was found in the V. rotundifolia mitochondrial genome. The phylogenetic tree was built based on 10 species of Lamiales, using the maximum likelihood method. Moreover, this phylogenetic analysis is the first to present the evolutionary relationship of V. rotundifolia with the other species in Lamiales, based on the complete mitochondrial genome.


Assuntos
Genoma Mitocondrial , Lamiaceae , Lamiales , Plantas Medicinais , Vitex , Lamiaceae/genética , Lamiales/genética , Filogenia , Plantas Medicinais/genética , RNA Ribossômico/genética , RNA de Transferência/genética , Análise de Sequência de DNA/métodos , Vitex/genética
5.
PLoS One ; 9(12): e114940, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25531885

RESUMO

Amomum villosum Lour., produced from Yangchun, Guangdong Province, China, is a Daodi medicinal material of Amomi Fructus in traditional Chinese medicine. This herb germplasm should be accurately identified and collected to ensure its quality and safety in medication. In the present study, single nucleotide polymorphism typing method was evaluated on the basis of DNA barcoding markers to identify the germplasm of Amomi Fructus. Genomic DNA was extracted from the leaves of 29 landraces representing three Amomum species (A. villosum Lour., A. xanthioides Wall. ex Baker and A. longiligulare T. L. Wu) by using the CTAB method. Six barcoding markers (ITS, ITS2, LSU D1-D3, matK, rbcL and trnH-psbA) were PCR amplified and sequenced; SNP typing and phylogenetic analysis were performed to differentiate the landraces. Results showed that high-quality bidirectional sequences were acquired for five candidate regions (ITS, ITS2, LSU D1-D3, matK, and rbcL) except trnH-psbA. Three ribosomal regions, namely, ITS, ITS2, and LSU D1-D3, contained more SNP genotypes (STs) than the plastid genes rbcL and matK. In the 29 specimens, 19 STs were detected from the combination of four regions (ITS, LSU D1-D3, rbcL, and matK). Phylogenetic analysis results further revealed two clades. Minimum-spanning tree demonstrated the existence of two main groups: group I was consisting of 9 STs (ST1-8 and ST11) of A. villosum Lour., and group II was composed of 3 STs (ST16-18) of A. longiligulare T.L. Wu. Our results suggested that ITS and LSU D1-D3 should be incorporated with the core barcodes rbcL and matK. The four combined regions could be used as a multiregional DNA barcode to precisely differentiate the Amomi Fructus landraces in different producing areas.


Assuntos
Amomum/genética , Polimorfismo de Nucleotídeo Único , Sequência de Bases , Citoplasma/metabolismo , Código de Barras de DNA Taxonômico , DNA de Plantas/metabolismo , Análise Discriminante , Marcadores Genéticos , Genótipo , Filogenia , Proteínas de Plantas/classificação , Proteínas de Plantas/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA