Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
1.
J Neurosci ; 43(9): 1614-1626, 2023 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-36653193

RESUMO

α-Synuclein plays a key role in the pathogenesis of Parkinson's disease and related disorders, but critical interacting partners and molecular mechanisms mediating neurotoxicity are incompletely understood. We show that α-synuclein binds directly to ß-spectrin. Using males and females in a Drosophila model of α-synuclein-related disorders, we demonstrate that ß-spectrin is critical for α-synuclein neurotoxicity. Further, the ankyrin binding domain of ß-spectrin is required for α-synuclein binding and neurotoxicity. A key plasma membrane target of ankyrin, Na+/K+ ATPase, is mislocalized when human α-synuclein is expressed in Drosophila Accordingly, membrane potential is depolarized in α-synuclein transgenic fly brains. We examine the same pathway in human neurons and find that Parkinson's disease patient-derived neurons with a triplication of the α-synuclein locus show disruption of the spectrin cytoskeleton, mislocalization of ankyrin and Na+/K+ ATPase, and membrane potential depolarization. Our findings define a specific molecular mechanism by which elevated levels of α-synuclein in Parkinson's disease and related α-synucleinopathies lead to neuronal dysfunction and death.SIGNIFICANCE STATEMENT The small synaptic vesicle associate protein α-synuclein plays a critical role in the pathogenesis of Parkinson's disease and related disorders, but the disease-relevant binding partners of α-synuclein and proximate pathways critical for neurotoxicity require further definition. We show that α-synuclein binds directly to ß-spectrin, a key cytoskeletal protein required for localization of plasma membrane proteins and maintenance of neuronal viability. Binding of α-synuclein to ß-spectrin alters the organization of the spectrin-ankyrin complex, which is critical for localization and function of integral membrane proteins, including Na+/K+ ATPase. These finding outline a previously undescribed mechanism of α-synuclein neurotoxicity and thus suggest potential new therapeutic approaches in Parkinson's disease and related disorders.


Assuntos
Doença de Parkinson , Espectrina , Animais , Feminino , Humanos , Masculino , Adenosina Trifosfatases/metabolismo , alfa-Sinucleína/metabolismo , Anquirinas/metabolismo , Drosophila/metabolismo , Proteínas de Membrana/metabolismo , Neurônios/metabolismo , Doença de Parkinson/metabolismo , Espectrina/metabolismo
2.
bioRxiv ; 2023 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-37333277

RESUMO

α-synuclein plays a key role in the pathogenesis of Parkinson's disease and related disorders, but critical interacting partners and molecular mechanisms mediating neurotoxicity are incompletely understood. We show that α-synuclein binds directly to ß-spectrin. Using males and females in a Drosophila model of α-synuclein-related disorders we demonstrate that ß-spectrin is critical for α-synuclein neurotoxicity. Further, the ankyrin binding domain of ß-spectrin is required for α-synuclein binding and neurotoxicity. A key plasma membrane target of ankyrin, Na+/K+ ATPase, is mislocalized when human α-synuclein is expressed in Drosophila. Accordingly, membrane potential is depolarized in α-synuclein transgenic fly brains. We examine the same pathway in human neurons and find that Parkinson's disease patient-derived neurons with a triplication of the α-synuclein locus show disruption of the spectrin cytoskeleton, mislocalization of ankyrin and Na+/K+ ATPase, and membrane potential depolarization. Our findings define a specific molecular mechanism by which elevated levels of α-synuclein in Parkinson's disease and related α-synucleinopathies leads to neuronal dysfunction and death.

3.
J Cell Biol ; 175(2): 325-35, 2006 Oct 23.
Artigo em Inglês | MEDLINE | ID: mdl-17060500

RESUMO

Prevailing models place spectrin downstream of ankyrin in a pathway of assembly and function in polarized cells. We used a transgene rescue strategy in Drosophila melanogaster to test contributions of four specific functional sites in beta spectrin to its assembly and function. (1) Removal of the pleckstrin homology domain blocked polarized spectrin assembly in midgut epithelial cells and was usually lethal. (2) A point mutation in the tetramer formation site, modeled after a hereditary elliptocytosis mutation in human erythrocyte spectrin, had no detectable effect on function. (3) Replacement of repetitive segments 4-11 of beta spectrin with repeats 2-9 of alpha spectrin abolished function but did not prevent polarized assembly. (4) Removal of the putative ankyrin-binding site had an unexpectedly mild phenotype with no detectable effect on spectrin targeting to the plasma membrane. The results suggest an alternate pathway in which spectrin directs ankyrin assembly and in which some important functions of spectrin are independent of ankyrin.


Assuntos
Anquirinas/metabolismo , Citoesqueleto/metabolismo , Drosophila/metabolismo , Transdução de Sinais , Espectrina/fisiologia , Animais , Anquirinas/genética , Western Blotting , Membrana Celular , Cruzamentos Genéticos , Drosophila/embriologia , Drosophila/genética , Proteínas de Drosophila/metabolismo , Células Epiteliais/metabolismo , Eritrócitos/citologia , Eritrócitos/metabolismo , Feminino , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/metabolismo , Masculino , Mutação , Fenótipo , ATPase Trocadora de Sódio-Potássio/metabolismo , Transgenes
4.
J Negat Results Biomed ; 9: 5, 2010 Jun 23.
Artigo em Inglês | MEDLINE | ID: mdl-20573195

RESUMO

BACKGROUND: Current models suggest that the spectrin cytoskeleton stabilizes interacting ion transport proteins at the plasma membrane. The human erythrocyte anion exchanger (AE1) was the first membrane transport protein found to be associated with the spectrin cytoskeleton. Here we evaluated a conserved anion exchanger from Drosophila (DAE) as a marker for studies of the downstream effects of spectrin cytoskeleton mutations. RESULTS: Sequence comparisons established that DAE belongs to the SLC4A1-3 subfamily of anion exchangers that includes human AE1. Striking sequence conservation was observed in the C-terminal membrane transport domain and parts of the N-terminal cytoplasmic domain, but not in the proposed ankyrin-binding site. Using an antibody raised against DAE and a recombinant transgene expressed in Drosophila S2 cells DAE was shown to be a 136 kd plasma membrane protein. A major site of expression was found in the stomach acid-secreting region of the larval midgut. DAE codistributed with an infolded subcompartment of the basal plasma membrane of interstitial cells. However, spectrin did not codistribute with DAE at this site or in anterior midgut cells that abundantly expressed both spectrin and DAE. Ubiquitous knockdown of DAE with dsRNA eliminated antibody staining and was lethal, indicating that DAE is an essential gene product in Drosophila. CONCLUSIONS: Based on the lack of colocalization and the lack of sequence conservation at the ankyrin-binding site, it appears that the well-characterized interaction between AE1 and the spectrin cytoskeleton in erythrocytes is not conserved in Drosophila. The results establish a pattern in which most of the known interactions between the spectrin cytoskeleton and the plasma membrane in mammals do not appear to be conserved in Drosophila.


Assuntos
Antiporters/metabolismo , Citoesqueleto/metabolismo , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/metabolismo , Espectrina/metabolismo , Sequência de Aminoácidos , Animais , Proteína 1 de Troca de Ânion do Eritrócito/química , Anticorpos/imunologia , Antiporters/química , Antiporters/genética , Sistema Digestório/citologia , Sistema Digestório/metabolismo , Proteínas de Drosophila/química , Proteínas de Drosophila/genética , Técnicas de Silenciamento de Genes , Humanos , Larva/citologia , Larva/metabolismo , Dados de Sequência Molecular , Ligação Proteica , Transporte Proteico , Interferência de RNA , Alinhamento de Sequência , Análise de Sequência de Proteína , Homologia de Sequência de Aminoácidos
5.
Int J Biochem Cell Biol ; 36(5): 745-52, 2004 May.
Artigo em Inglês | MEDLINE | ID: mdl-15061126

RESUMO

Copper cells in the Drosophila midgut were originally named for their ability to accumulate dietary copper. Recent studies have uncovered a number of intriguing similarities between copper cells and the acid-producing gastric parietal cells of the mammalian stomach. In addition to their shared roles in stomach acidification, they share a peculiar invaginated morphology in which the apical cell surface is buried deep within the cytoplasm. These shared properties of morphology and function portend the identification of shared molecular mechanisms that account for their specialized roles in digestive physiology.


Assuntos
Cobre/metabolismo , Drosophila/citologia , Ácido Gástrico/metabolismo , Estômago/citologia , Animais , Drosophila/crescimento & desenvolvimento , Drosophila/metabolismo , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Mucosa Gástrica/metabolismo , Proteínas de Homeodomínio/genética , Proteínas de Homeodomínio/metabolismo , Larva/anatomia & histologia , Larva/metabolismo , Mamíferos/anatomia & histologia , Mamíferos/metabolismo , Células Parietais Gástricas/metabolismo , Células Parietais Gástricas/ultraestrutura , Estômago/anatomia & histologia
6.
Genetics ; 195(3): 871-81, 2013 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-24037266

RESUMO

Spectrin cytoskeleton defects produce a host of phenotypes affecting the plasma membrane, cell polarity, and secretory membrane traffic. However, many of the underlying molecular mechanisms remain unexplained by prevailing models. Here we used the larval fat body of Drosophila melanogaster as a genetic model system to further elucidate mechanisms of αß-spectrin function. The results provide unexpected new insights into spectrin function as well as mechanisms of dietary fat uptake and storage. We show that loss of α- or ß-spectrin in the fat body eliminated a population of small cortical lipid droplets and altered plasma membrane architecture, but did not affect viability of the organism. We present a novel model in which αß-spectrin directly couples lipid uptake at the plasma membrane to lipid droplet growth in the cytoplasm. In contrast, strong overexpression of ß-spectrin caused fat body atrophy and larval lethality. Overexpression of ß-spectrin also perturbed transport of dietary fat from the midgut to the fat body. This hypermorphic phenotype appears to be the result of blocking secretion of the lipid carrier lipophorin from fat cells. However, this midgut phenotype was never seen with spectrin loss of function, suggesting that spectrin is not normally required for lipophorin secretion or function. The ß-spectrin hypermorphic phenotype was ameliorated by co-overexpression of α-spectrin. Based on the overexpression results here, we propose that ß-spectrin family members may be prone to hypermorphic effects (including effects on secretion) if their activity is not properly regulated.


Assuntos
Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/genética , Drosophila melanogaster/metabolismo , Metabolismo dos Lipídeos/genética , Espectrina/genética , Espectrina/metabolismo , Animais , Animais Geneticamente Modificados , Transporte Biológico Ativo/genética , Membrana Celular/metabolismo , Proteínas de Drosophila/antagonistas & inibidores , Drosophila melanogaster/ultraestrutura , Corpo Adiposo/metabolismo , Corpo Adiposo/ultraestrutura , Feminino , Dosagem de Genes , Técnicas de Silenciamento de Genes , Genes de Insetos , Larva/genética , Larva/metabolismo , Larva/ultraestrutura , Masculino , Modelos Biológicos , Mutação , Fenótipo , Espectrina/antagonistas & inibidores
7.
Mol Biol Cell ; 21(16): 2860-8, 2010 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-20573981

RESUMO

The protein spectrin is ubiquitous in animal cells and is believed to play important roles in cell shape and membrane stability, cell polarity, and endomembrane traffic. Experiments here were undertaken to identify sites of essential beta spectrin function in Drosophila and to determine whether spectrin and ankyrin function are strictly linked to one another. The Gal4-UAS system was used to drive tissue-specific overexpression of a beta spectrin transgene or to knock down beta spectrin expression with dsRNA. The results show that 1) overexpression of beta spectrin in most of the cell types studied was lethal; 2) knockdown of beta spectrin in most tissues had no detectable effect on growth or viability of the organism; and 3) nervous system-specific expression of a UAS-beta spectrin transgene was sufficient to overcome the lethality of a loss-of-function beta spectrin mutation. Thus beta spectrin expression in other cells was not required for development of fertile adult males, although females lacking nonneuronal spectrin were sterile. Previous data indicated that binding of the DAnk1 isoform of ankyrin to spectrin was partially dispensable for viability. Domain swap experiments here uncovered a different requirement for neuronal DAnk2 binding to spectrin and establish that DAnk2-binding is critical for beta spectrin function in vivo.


Assuntos
Anquirinas/metabolismo , Proteínas de Drosophila/metabolismo , Sistema Nervoso/metabolismo , Espectrina/metabolismo , Animais , Animais Geneticamente Modificados , Anquirinas/genética , Cruzamentos Genéticos , Proteínas de Drosophila/genética , Drosophila melanogaster/genética , Drosophila melanogaster/crescimento & desenvolvimento , Drosophila melanogaster/metabolismo , Feminino , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/metabolismo , Longevidade/genética , Masculino , Microscopia Confocal , Mutação , Sistema Nervoso/crescimento & desenvolvimento , Neurônios/metabolismo , Ligação Proteica , Interferência de RNA , Glândulas Salivares/metabolismo , Espectrina/genética , Transgenes/genética
8.
J Biol Chem ; 283(18): 12643-53, 2008 May 02.
Artigo em Inglês | MEDLINE | ID: mdl-18287096

RESUMO

The spectrin cytoskeleton assembles within discrete regions of the plasma membrane in a wide range of animal cell types. Although recent studies carried out in vertebrate systems indicate that spectrin assembly occurs indirectly through the adapter protein ankyrin, recent studies in Drosophila have established that spectrin can also assemble through a direct ankyrin-independent mechanism. Here we tested specific regions of the spectrin molecule for a role in polarized assembly and function. First, we tested mutant beta-spectrins lacking ankyrin binding activity and/or the COOH-terminal pleckstrin homology (PH) domain for their assembly competence in midgut, salivary gland, and larval brain. Remarkably, three different assembly mechanisms operate in these three cell types: 1) neither site was required for assembly in salivary gland; 2) only the PH domain was required in midgut copper cells; and 3) either one of the two sites was sufficient for spectrin assembly in larval brain. Further characterization of the PH domain revealed that it binds strongly to lipid mixtures containing phosphatidylinositol 4,5-bisphosphate (PIP(2)) but not phosphatidylinositol 3,4,5-trisphosphate. A K8Q mutation in the lipid binding region of the PH domain eliminated the PIP(2) interaction in vitro, yet the mutant protein retained full biological function in vivo. Reporter gene studies revealed that PIP(2) and the spectrin PH domain codistribute with one another in cells but not with authentic wild type alphabeta-spectrin. Thus, it appears that the PH domain imparts membrane targeting activity through a second mechanism that takes precedence over its PIP(2) binding activity.


Assuntos
Citoesqueleto/metabolismo , Espectrina/química , Espectrina/metabolismo , Animais , Anquirinas/metabolismo , Encéfalo/citologia , Encéfalo/metabolismo , Membrana Celular/metabolismo , Drosophila melanogaster/citologia , Drosophila melanogaster/embriologia , Imunoprecipitação , Larva/citologia , Larva/metabolismo , Modelos Biológicos , Fosfatidilinositol 4,5-Difosfato/metabolismo , Mutação Puntual/genética , Ligação Proteica , Estrutura Quaternária de Proteína , Estrutura Terciária de Proteína , Transporte Proteico , Glândulas Salivares/citologia , Glândulas Salivares/metabolismo , Ressonância de Plasmônio de Superfície , Transgenes
9.
Development ; 134(2): 273-84, 2007 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-17121810

RESUMO

alpha- and beta-Spectrin are major components of a submembrane cytoskeletal network connecting actin filaments to integral plasma membrane proteins. Besides its structural role in red blood cells, the Spectrin network is thought to function in non-erythroid cells during protein targeting and membrane domain formation. Here, we demonstrate that beta-Spectrin is required in neurons for proper midline axon guidance in the Drosophila embryonic CNS. In beta-spectrin mutants many axons inappropriately cross the CNS midline, suggesting a role for beta-Spectrin in midline repulsion. Surprisingly, neither the Ankyrin-binding nor the pleckstrin homology (PH) domains of beta-Spectrin are required for accurate guidance decisions. alpha-Spectrin is dependent upon beta-Spectrin for its normal subcellular localization and/or maintenance, whereas alpha-spectrin mutants exhibit a redistribution of beta-Spectrin to the axon scaffold. beta-spectrin mutants show specific dose-dependent genetic interactions with the midline repellent slit and its neuronal receptor roundabout (robo), but not with other guidance molecules. The results suggest that beta-Spectrin contributes to midline repulsion through the regulation of Slit-Robo pathway components. We propose that the Spectrin network is playing a role independently of Ankyrin in the establishment and/or maintenance of specialized membrane domains containing guidance molecules that ensure the fidelity of axon repulsion at the midline.


Assuntos
Anquirinas/metabolismo , Sistema Nervoso Central/embriologia , Sistema Nervoso Central/metabolismo , Proteínas de Drosophila/metabolismo , Drosophila/embriologia , Drosophila/metabolismo , Espectrina/metabolismo , Animais , Animais Geneticamente Modificados , Anquirinas/genética , Axônios/metabolismo , Moléculas de Adesão Celular/genética , Moléculas de Adesão Celular/metabolismo , Drosophila/genética , Proteínas de Drosophila/química , Proteínas de Drosophila/genética , Feminino , Genes de Insetos , Masculino , Mutação , Estrutura Terciária de Proteína , Espectrina/química , Espectrina/genética
10.
J Membr Biol ; 211(3): 151-61, 2006.
Artigo em Inglês | MEDLINE | ID: mdl-17091212

RESUMO

Membrane transporters precisely regulate which molecules cross the plasma membrane and when they can cross. In many cases it is also important to regulate where substances can cross the plasma membrane. Consequently, cells have evolved mechanisms to confine and stabilize membrane transport proteins within specific subdomains of the plasma membrane. A number of different transporters (including ion pumps, channels and exchangers) are known to physically associate with the spectrin cytoskeleton, a submembrane complex of spectrin and ankyrin. These proteins form a protein scaffold that assembles within discrete subdomains of the plasma membrane in polarized cells. Recent genetic studies in humans and model organisms have provided the opportunity to test the hypothesis that the spectrin cytoskeleton has a direct role in restricting transporters to specialized domains. Remarkably, genetic defects in spectrin and ankyrin can produce effects on cell physiology that are comparable to knockouts of the transporters themselves.


Assuntos
Transporte Biológico/fisiologia , Membrana Celular/fisiologia , Citoesqueleto/fisiologia , Espectrina/fisiologia , Sistema X-AG de Transporte de Aminoácidos/fisiologia , Animais , Anquirinas/fisiologia , Citoesqueleto/química , Drosophila , Humanos , Modelos Biológicos , Miócitos Cardíacos/fisiologia , Neurônios/fisiologia , Espectrina/análise , Espectrina/genética , Canais de Ânion Dependentes de Voltagem/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA