Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 83
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 120(17): e2215610120, 2023 04 25.
Artigo em Inglês | MEDLINE | ID: mdl-37068240

RESUMO

In 2013 to 2017, avian influenza A(H7N9) virus has caused five severe epidemic waves of human infections in China. The role of live bird markets (LBMs) in the transmission dynamics of H7N9 remains unclear. Using a Bayesian phylodynamic approach, we shed light on past H7N9 transmission events at the human-LBM interface that were not directly observed using case surveillance data-based approaches. Our results reveal concurrent circulation of H7N9 lineages in Yangtze and Pearl River Delta regions, with evidence of local transmission during each wave. Our results indicate that H7N9 circulated in humans and LBMs for weeks to months before being first detected. Our findings support the seasonality of H7N9 transmission and suggest a high number of underreported infections, particularly in LBMs. We provide evidence for differences in virus transmissibility between low and highly pathogenic H7N9. We demonstrate a regional spatial structure for the spread of H7N9 among LBMs, highlighting the importance of further investigating the role of local live poultry trade in virus transmission. Our results provide estimates of avian influenza virus (AIV) transmission at the LBM level, providing a unique opportunity to better prepare surveillance plans at LBMs for response to future AIV epidemics.


Assuntos
Subtipo H7N9 do Vírus da Influenza A , Influenza Aviária , Influenza Humana , Animais , Humanos , Teorema de Bayes , Aves Domésticas , China/epidemiologia
2.
J Virol ; 97(2): e0142322, 2023 02 28.
Artigo em Inglês | MEDLINE | ID: mdl-36692289

RESUMO

Concurrent infections with multiple pathogens are often described in cattle with respiratory illness. However, how the host-pathogen interactions influence the clinical outcome has been only partially explored in this species. Influenza D virus (IDV) was discovered in 2011. Since then, IDV has been detected worldwide in different hosts. A significant association between IDV and bacterial pathogens in sick cattle was shown in epidemiological studies, especially with Mycoplasma bovis. In an experimental challenge, IDV aggravated M. bovis-induced pneumonia. However, the mechanisms through which IDV drives an increased susceptibility to bacterial superinfections remain unknown. Here, we used the organotypic lung model precision-cut lung slices to study the interplay between IDV and M. bovis coinfection. Our results show that a primary IDV infection promotes M. bovis superinfection by increasing the bacterial replication and the ultrastructural damages in lung pneumocytes. In our model, IDV impaired the innate immune response triggered by M. bovis by decreasing the expression of several proinflammatory cytokines and chemokines that are important for immune cell recruitment and the bacterial clearance. Stimulations with agonists of cytosolic helicases and Toll-like receptors (TLRs) revealed that a primary activation of RIG-I/MDA5 desensitizes the TLR2 activation, similar to what was observed with IDV infection. The cross talk between these two pattern recognition receptors leads to a nonadditive response, which alters the TLR2-mediated cascade that controls the bacterial infection. These results highlight innate immune mechanisms that were not described for cattle so far and improve our understanding of the bovine host-microbe interactions and IDV pathogenesis. IMPORTANCE Since the spread of the respiratory influenza D virus (IDV) infection to the cattle population, the question about the impact of this virus on bovine respiratory disease (BRD) remains still unanswered. Animals affected by BRD are often coinfected with multiple pathogens, especially viruses and bacteria. In particular, viruses are suspected to enhance secondary bacterial superinfections. Here, we use an ex vivo model of lung tissue to study the effects of IDV infection on bacterial superinfections. Our results show that IDV increases the susceptibility to the respiratory pathogen Mycoplasma bovis. In particular, IDV seems to activate immune pathways that inhibit the innate immune response against the bacteria. This may allow M. bovis to increase its proliferation and to delay its clearance from lung tissue. These results suggest that IDV could have a negative impact on the respiratory pathology of cattle.


Assuntos
Doenças dos Bovinos , Interações entre Hospedeiro e Microrganismos , Infecções por Mycoplasma , Infecções por Orthomyxoviridae , Transdução de Sinais , Thogotovirus , Animais , Bovinos , Doenças dos Bovinos/imunologia , Doenças dos Bovinos/virologia , Pulmão/imunologia , Pulmão/microbiologia , Pulmão/virologia , Mycoplasma bovis/imunologia , Infecções por Orthomyxoviridae/imunologia , Infecções por Orthomyxoviridae/veterinária , Infecções por Orthomyxoviridae/virologia , Transdução de Sinais/imunologia , Superinfecção/imunologia , Superinfecção/veterinária , Receptor 2 Toll-Like , Interações entre Hospedeiro e Microrganismos/imunologia , Infecções por Mycoplasma/imunologia , Infecções por Mycoplasma/virologia
3.
Eur J Immunol ; 52(1): 54-61, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34580855

RESUMO

Toll-like receptor 7 (TLR7) triggers antiviral immune responses through its capacity to recognize ssRNA. Proteolytic cleavage of TLR7 protein is required for its functional maturation in the endosomal compartment. Structural studies demonstrated that the N- and C-terminal domains of TLR7 are connected and involved in ligand binding after cleavage. Hydroxychloroquine (HCQ), an antimalarial drug, has been studied for its antiviral effects. HCQ increases pH in acidic organelles and has been reported to potently inhibit endosomal TLR activation. Whether HCQ can prevent endogenous TLR7 cleavage in primary immune cells, such as plasmacytoid DCs (pDCs), had never been examined. Here, using a validated anti-TLR7 antibody suitable for biochemical detection of native TLR7 protein, we show that HCQ treatment of fresh PBMCs, CAL-1 leukemic, and primary human pDCs inhibits TLR7 cleavage and results in accumulation of full-length protein. As a consequence, we observe an inhibition of pDC activation in response to TLR7 stimulation with synthetic ligands and viruses including inactivated SARS-CoV2, which we show herein activates pDCs through TLR7-signaling. Together, our finding suggests that the major pathway by which HCQ inhibits ssRNA sensing by pDCs may rely on its capacity to inhibit endosomal acidification and the functional maturation of TLR7 protein.


Assuntos
COVID-19/imunologia , Células Dendríticas/imunologia , Hidroxicloroquina/farmacologia , Proteólise/efeitos dos fármacos , SARS-CoV-2/imunologia , Receptor 7 Toll-Like/imunologia , Linhagem Celular , Endossomos/imunologia , Humanos , Tratamento Farmacológico da COVID-19
4.
BMC Infect Dis ; 23(1): 435, 2023 Jun 27.
Artigo em Inglês | MEDLINE | ID: mdl-37370005

RESUMO

Human adenoviruses (HAdV) are a diverse group of viruses causing a broad range of infections of the respiratory, urogenital and gastrointestinal tracts and keratoconjunctivitis. There are seven species of human adenoviruses with 113 genotypes which may contain multiple genetic variants. This study characterised respiratory human adenoviruses and associated factors in samples collected from selected hospitals in Uganda. A total of 2,298 nasopharyngeal samples were collected between the period of 2008 to 2016 from patients seeking health care at tertiary hospitals for influenza-like illness. They were screened by polymerase chain reaction (PCR) to determine the prevalence of HAdV. HAdV was cultured in A549 cell lines and the hexon gene was sequenced for genotyping. Of the 2,298 samples tested, 225 (9.8%) were adenovirus-positive by PCR. Age was found to be significantly associated with HAdV infections (p = 0.028) with 98% (220/225) of the positives in children aged 5 years and below and none in adults above 25 years of age. The sequenced isolates belonged to species HAdV-B and HAdV-C with most isolates identified as genotype B3. The results showed a high prevalence and genetic diversity in respiratory HAdV circulating in Ugandan population. Deeper genomic characterization based on whole genome sequencing may be necessary to further elucidate possible transmission and impact of current adenovirus-vectored vaccines in Africa.


Assuntos
Infecções por Adenovirus Humanos , Adenovírus Humanos , Infecções Respiratórias , Criança , Adulto , Humanos , Lactente , Uganda/epidemiologia , Análise de Sequência de DNA , Infecções por Adenovirus Humanos/epidemiologia , Infecções Respiratórias/epidemiologia , Genótipo , Filogenia
5.
Emerg Infect Dis ; 28(12): 2534-2537, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36417959

RESUMO

In August 2021, we detected highly pathogenic avian influenza A(H5N1) clade 2.3.4.4b viruses in poultry in southern Benin. The isolates were genetically similar to H5N1 viruses of clade 2.3.4.4b isolated during the same period in Africa and Europe. We also found evidence for 2 separate introductions of these viruses into Benin.


Assuntos
Virus da Influenza A Subtipo H5N1 , Influenza Aviária , Influenza Humana , Animais , Humanos , Aves Domésticas , Influenza Aviária/epidemiologia , Benin/epidemiologia , Filogenia , Aves
6.
Vet Res ; 53(1): 70, 2022 Sep 06.
Artigo em Inglês | MEDLINE | ID: mdl-36068558

RESUMO

Bovine respiratory disease (BRD) is one of the most important diseases impacting the global cattle industry, resulting in significant economic loss. Commonly referred to as shipping fever, BRD is especially concerning for young calves during transport when they are most susceptible to developing disease. Despite years of extensive study, managing BRD remains challenging as its aetiology involves complex interactions between pathogens, environmental and host factors. While at the beginning of the twentieth century, scientists believed that BRD was only caused by bacterial infections ("bovine pasteurellosis"), we now know that viruses play a key role in BRD induction. Mixtures of pathogenic bacteria and viruses are frequently isolated from respiratory secretions of animals with respiratory illness. The increased diagnostic screening data has changed our understanding of pathogens contributing to BRD development. In this review, we aim to comprehensively examine experimental evidence from all existing studies performed to understand coinfections between respiratory pathogens in cattle. Despite the fact that pneumonia has not always been successfully reproduced by in vivo calf modelling, several studies attempted to investigate the clinical significance of interactions between different pathogens. The most studied model of pneumonia induction has been reproduced by a primary viral infection followed by a secondary bacterial superinfection, with strong evidence suggesting this could potentially be one of the most common scenarios during BRD onset. Different in vitro studies indicated that viral priming may increase bacterial adherence and colonization of the respiratory tract, suggesting a possible mechanism underpinning bronchopneumonia onset in cattle. In addition, a few in vivo studies on viral coinfections and bacterial coinfections demonstrated that a primary viral infection could also increase the pathogenicity of a secondary viral infection and, similarly, dual infections with two bacterial pathogens could increase the severity of BRD lesions. Therefore, different scenarios of pathogen dynamics could be hypothesized for BRD onset which are not limited to a primary viral infection followed by a secondary bacterial superinfection.


Assuntos
Complexo Respiratório Bovino , Doenças dos Bovinos , Coinfecção , Infecções por Pasteurella , Doenças Respiratórias , Superinfecção , Viroses , Animais , Bactérias , Bovinos , Doenças dos Bovinos/microbiologia , Coinfecção/veterinária , Infecções por Pasteurella/veterinária , Sistema Respiratório , Doenças Respiratórias/veterinária , Superinfecção/veterinária , Viroses/veterinária
7.
J Virol ; 94(18)2020 08 31.
Artigo em Inglês | MEDLINE | ID: mdl-32611750

RESUMO

Since its detection in swine, influenza D virus (IDV) has been shown to be present in multiple animal hosts, and bovines have been identified as its natural reservoir. However, it remains unclear how IDVs emerge, evolve, spread, and maintain in bovine populations. Through multiple years of virological and serological surveillance in a single order-buyer cattle facility in Mississippi, we showed consistently high seroprevalence of IDVs in cattle and recovered a total of 32 IDV isolates from both healthy and sick animals, including those with antibodies against IDV. Genomic analyses of these isolates along with those isolated from other areas showed that active genetic reassortment occurred in IDV and that five reassortants were identified in the Mississippian facility. Two antigenic groups were identified through antigenic cartography analyses for these 32 isolates and representative IDVs from other areas. Remarkably, existing antibodies could not protect cattle from experimental reinfection with IDV. Additional phenotypic analyses demonstrated variations in growth dynamics and pathogenesis in mice between viruses independent of genomic constellation. In summary, this study suggests that, in addition to epidemiological factors, the ineffectiveness of preexisting immunity and cocirculation of a diverse viral genetic pool could facilitate its high prevalence in animal populations.IMPORTANCE Influenza D viruses (IDVs) are panzootic in multiple animal hosts, but the underlying mechanism is unclear. Through multiple years of surveillance in the same order-buyer cattle facility, 32 IDV isolates were recovered from both healthy and sick animals, including those with evident antibodies against IDV. Active reassortment occurred in the cattle within this facility and in those across other areas, and multiple reassortants cocirculated in animals. These isolates are shown with a large extent of phenotypic diversity in replication efficiency and pathogenesis but little in antigenic properties. Animal experiments demonstrated that existing antibodies could not protect cattle from experimental reinfection with IDV. This study suggests that, in addition to epidemiological factors, limited protection from preexisting immunity against IDVs in cattle herds and cocirculation of a diverse viral genetic pool likely facilitate the high prevalence of IDVs in animal populations.


Assuntos
Anticorpos Antivirais/sangue , Proteção Cruzada , Genoma Viral , Infecções por Orthomyxoviridae/epidemiologia , Vírus Reordenados/imunologia , Thogotovirus/imunologia , Animais , Bovinos , Monitoramento Epidemiológico , Fazendas , Variação Genética , Genótipo , Hospitais Veterinários , Imunidade Inata , Camundongos , Mississippi/epidemiologia , Tipagem Molecular , Infecções por Orthomyxoviridae/imunologia , Infecções por Orthomyxoviridae/virologia , Filogenia , Vírus Reordenados/classificação , Vírus Reordenados/genética , Vírus Reordenados/patogenicidade , Estudos Soroepidemiológicos , Thogotovirus/classificação , Thogotovirus/genética , Thogotovirus/patogenicidade , Replicação Viral
8.
J Virol ; 93(10)2019 05 15.
Artigo em Inglês | MEDLINE | ID: mdl-30842318

RESUMO

Guinea fowl coronavirus (GfCoV) causes fulminating enteritis that can result in a daily death rate of 20% in guinea fowl flocks. Here, we studied GfCoV diversity and evaluated its phenotypic consequences. Over the period of 2014 to 2016, affected guinea fowl flocks were sampled in France, and avian coronavirus presence was confirmed by PCR on intestinal content and immunohistochemistry of intestinal tissue. Sequencing revealed 89% amino acid identity between the viral attachment protein S1 of GfCoV/2014 and that of the previously identified GfCoV/2011. To study the receptor interactions as a determinant for tropism and pathogenicity, recombinant S1 proteins were produced and analyzed by glycan and tissue arrays. Glycan array analysis revealed that, in addition to the previously elucidated biantennary di-N-acetyllactosamine (diLacNAc) receptor, viral attachment S1 proteins from GfCoV/2014 and GfCoV/2011 can bind to glycans capped with alpha-2,6-linked sialic acids. Interestingly, recombinant GfCoV/2014 S1 has an increased affinity for these glycans compared to that of GfCoV/2011 S1, which was in agreement with the increased avidity of GfCoV/2014 S1 for gastrointestinal tract tissues. Enzymatic removal of receptors from tissues before application of spike proteins confirmed the specificity of S1 tissue binding. Overall, we demonstrate that diversity in GfCoV S1 proteins results in differences in glycan and tissue binding properties.IMPORTANCE Avian coronaviruses cause major global problems in the poultry industry. As causative agents of huge economic losses, the detection and understanding of the molecular determinants of viral tropism are of ultimate importance. Here, we set out to study those parameters and obtained in-depth insight into the virus-host interactions of guinea fowl coronavirus (GfCoV). Our data indicate that diversity in GfCoV viral attachment proteins results in differences in degrees of affinity for glycan receptors, as well as altered avidity for intestinal tract tissues, which might have consequences for GfCoV tissue tropism and pathogenesis in guinea fowls.


Assuntos
Gammacoronavirus/genética , Gammacoronavirus/metabolismo , Tropismo Viral/genética , Animais , Coronavirus/metabolismo , Coronavirus/patogenicidade , Infecções por Coronavirus/virologia , Enterite/metabolismo , Enterite/virologia , França , Galliformes/virologia , Gammacoronavirus/fisiologia , Variação Genética , Fenótipo , Polissacarídeos , Receptores Virais/metabolismo , Ácidos Siálicos , Glicoproteína da Espícula de Coronavírus/metabolismo , Ligação Viral
9.
Virol J ; 17(1): 108, 2020 07 17.
Artigo em Inglês | MEDLINE | ID: mdl-32680533

RESUMO

BACKGROUND: H9N2 avian influenza viruses (AIV) has a worldwide geographic distribution and affects poultry of different types of production. H9N2 AIV was first reported in the Northeast of Algeria in April 2017, following an outbreak associated with high mortality, in broiler flocks. In the present study, we report full-length genome sequences of AIV H9N2, and the detailed phylogeny and molecular genetic analyses. METHODS: Ten AIV H9N2 strains, collected in broiler flocks, were amplified in 9-day-old embryonated specific pathogen free (SPF) chicken eggs. Their full-length genomes were successfully sequenced and phylogenetic and molecular characterizations were conducted. RESULTS: Phylogenetic analysis showed that the isolates were monophyletic, grouped within the G-1 lineage and were very close to Moroccan and Algerian strains identified in 2016 and 2017, respectively. The low pathogenicity of the strains was confirmed by the sequence motif (335RSSR/GLF341) at the hemagglutinin (HA) cleavage site. An exclusive substitution (T197A) that had not been previously reported for H9N2 viruses; but, conserved in some pandemic H1N1 viruses, was observed. When compared to the G1-like H9N2 prototype, the studied strains showed one less glycosylation site in HA, but 2-3 additional ones in the stalk of the neuraminidase (NA). The HA protein harbored the substitution 234 L, suggesting binding preference to human-like receptors. The NA protein harbored S372A and R403W substitutions, previously detected in H9N2 from Asia and the Middle East, and especially in H2N2 and H3N2 strains that caused human pandemics. Different molecular markers associated with virulence and mammalian infections have been detected in the viral internal proteins. The matrix M2 protein possessed the S31N substitution associated with drug resistance. The non-structural 1 (NS1) protein showed the "GSEV" PDZ ligand (PL) C-terminal motif and no 80-84 deletion. CONCLUSION: Characterized Algerian AIV isolates showed mutations that suggest increased zoonotic potential. Additional studies in animal models are required to investigate the pathogenicity of these H9N2 AIV strains. Monitoring their evolution in both migratory and domestic birds is crucial to prevent transmission to humans. Implementation of adequate biosecurity measures that limit the introduction and the propagation of AIV H9N2 in Algerian poultry farm is crucial.


Assuntos
Surtos de Doenças/veterinária , Genoma Viral , Vírus da Influenza A Subtipo H9N2/genética , Influenza Aviária/virologia , Filogenia , Argélia/epidemiologia , Animais , Galinhas/virologia , Vírus da Influenza A Subtipo H9N2/isolamento & purificação , Influenza Aviária/epidemiologia , Análise de Sequência de DNA , Organismos Livres de Patógenos Específicos , Sequenciamento Completo do Genoma
10.
Avian Pathol ; 49(1): 21-28, 2020 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-31412705

RESUMO

Since the emergence of low pathogenic avian influenza (LPAI) H9N2 viruses in Morocco in 2016, severe respiratory problems have been encountered in the field. Infectious bronchitis virus (IBV) is often detected together with H9N2, suggesting disease exacerbation in cases of co-infections. This hypothesis was therefore tested and confirmed in laboratory conditions using specific-pathogen-free chickens. Most common field vaccine programmes were then tested to compare their efficacies against these two co-infecting agents. IBV γCoV/chicken/Morocco/I38/2014 (Mor-IT02) and LPAI virus A/chicken/Morocco/SF1/2016 (Mor-H9N2) were thus inoculated to commercial chickens. We showed that vaccination with two heterologous IBV vaccines (H120 at day one and 4/91 at day 14 of age) reduced the severity of clinical signs as well as macroscopic lesions after simultaneous experimental challenge. In addition, LPAI H9N2 vaccination was more efficient at day 7 than at day 1 in limiting disease post simultaneous challenge.RESEARCH HIGHLIGHTS Simultaneous challenge with IBV and AIV H9N2 induced higher pathogenicity in SPF birds than inoculation with IBV or AIV H9N2 alone.Recommended vaccination programme in commercial broilers to counter Mor-IT02 IBV and LPAIV H9N2 simultaneous infections: IB live vaccine H120 (d1), AIV H9N2 inactivated vaccine (d7), IB live vaccine 4-91 (d14).


Assuntos
Galinhas , Coinfecção/veterinária , Infecções por Coronavirus/veterinária , Vírus da Bronquite Infecciosa , Vírus da Influenza A Subtipo H9N2 , Influenza Aviária/virologia , Animais , Anticorpos Antivirais/sangue , Embrião de Galinha , Coinfecção/prevenção & controle , Coinfecção/virologia , Infecções por Coronavirus/prevenção & controle , Infecções por Coronavirus/virologia , Influenza Aviária/prevenção & controle , Pulmão/patologia , Marrocos , Orofaringe/virologia , Projetos Piloto , Doenças das Aves Domésticas/prevenção & controle , Doenças das Aves Domésticas/virologia , RNA Viral/química , RNA Viral/isolamento & purificação , Reação em Cadeia da Polimerase em Tempo Real/veterinária , Organismos Livres de Patógenos Específicos , Traqueia/patologia , Vacinação/veterinária , Vacinas Atenuadas , Vacinas Virais , Eliminação de Partículas Virais
12.
BMC Vet Res ; 15(1): 351, 2019 Oct 21.
Artigo em Inglês | MEDLINE | ID: mdl-31638995

RESUMO

BACKGROUND: Viral diseases are a matter of great concern for poultry farmers in Pakistan. Multiple common viral respiratory diseases (CVRDs) cause huge economic losses in the poultry industry. The prevalence of CVRDs in many countries, including Pakistan, is not clearly understood. RESULTS: Incidences of 5 chicken respiratory viruses: avian influenza virus (AIV), Newcastle disease virus (NDV/AAVV-1), infectious bronchitis virus (IBV), avian metapneumovirus (aMPV) and infectious laryngotracheitis virus (ILTV) were assessed on commercial Pakistani farms with respiratory problems from 2014 through to 2016. While AIV and AAVV-1 were frequently detected (16 to 17% of farms), IBV and aMPV were rarely detected (in 3 to 5% of farms) and ILTV was not detected. We characterized H9 AIV of the G1 lineage, genotype VII AAVV-1, GI-13 IBV, and type B aMPV strains with very little genetic variability in the 2-year study period. Co-infections with AIV and AAVV-1 were common and wild type AAVV-1 was detected despite the use of vaccines. Control measures to limit the virus burden in chicken flocks are discussed. CONCLUSIONS: Our data shows that AIV (H9), AAVV-1, IBV and aMPV are prevalent in commercial poultry in Pakistan. Further studies are necessary to assess circulating strains, economic losses caused by infections and coinfections of these pathogens, and the costs and benefits of countermeasures. Furthermore, veterinarians and farmers should be informed of the pathogens circulating in the field and hence advised on the use of vaccines.


Assuntos
Galinhas , Doenças das Aves Domésticas/virologia , Viroses/veterinária , Animais , Galinhas/genética , Herpesvirus Galináceo 1 , História do Século XXI , Incidência , Vírus da Bronquite Infecciosa , Vírus da Influenza A , Metapneumovirus , Epidemiologia Molecular , Paquistão/epidemiologia , Doenças das Aves Domésticas/epidemiologia , Doenças das Aves Domésticas/história , Prevalência , Viroses/epidemiologia , Viroses/história
13.
Ir Vet J ; 72: 11, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31687130

RESUMO

Influenza D virus (IDV) is a new member of the Orthomyxoviridae family. It was first reported in swine in 2011 and isolated from bovine samples received for routine respiratory disease diagnosis in Ireland during 2014-2016. The goal of this study was to determine the seroprevalence in selected populations of IDV in cattle, pigs and sheep. Results showed a high prevalence of IDV in cattle sampled at slaughter (94.6%) or for diagnostic reasons (64.9%), whereas prevelance in samples taken for diagnostic reasons from sheep (4.5%) and pigs (5.8%) was much lower. This study suggests that IDV is widespread in Irish cattle.

14.
Emerg Infect Dis ; 24(7): 1388-1389, 2018 07.
Artigo em Inglês | MEDLINE | ID: mdl-29912692

RESUMO

We detected antibodies against influenza D in 80.2% of the cattle sampled in Luxembourg in 2016, suggesting widespread virus circulation throughout the country. In swine, seroprevalence of influenza D was low but increased from 0% to 5.9% from 2012 to 2014-2015.


Assuntos
Doenças dos Bovinos/epidemiologia , Doenças dos Bovinos/virologia , Infecções por Orthomyxoviridae/veterinária , Doenças dos Suínos/epidemiologia , Doenças dos Suínos/virologia , Thogotovirus , Animais , Bovinos , Doenças dos Bovinos/história , Geografia Médica , História do Século XXI , Luxemburgo/epidemiologia , Estudos Soroepidemiológicos , Suínos , Doenças dos Suínos/história
15.
Avian Pathol ; 47(3): 253-260, 2018 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-29350071

RESUMO

Respiratory syndromes (RS) are among the most significant pathological conditions in edible birds and are caused by complex coactions of pathogens and environmental factors. In poultry, low pathogenic avian influenza A viruses, metapneumoviruses, infectious bronchitis virus, infectious laryngotracheitis virus, Mycoplasma spp. Escherichia coli and/or Ornithobacterium rhinotracheale in turkeys are considered as key co-infectious agents of RS. Aspergillus sp., Pasteurella multocida, Avibacterium paragallinarum or Chlamydia psittaci may also be involved in respiratory outbreaks. An innovative quantitative PCR method, based on a nanofluidic technology, has the ability to screen up to 96 samples with 96 pathogen-specific PCR primers, at the same time, in one run of real-time quantitative PCR. This platform was used for the screening of avian respiratory pathogens: 15 respiratory agents, including viruses, bacteria and fungi potentially associated with respiratory infections of poultry, were targeted. Primers were designed and validated for SYBR green real-time quantitative PCR and subsequently validated on the Biomark high throughput PCR nanofluidic platform (Fluidigm©, San Francisco, CA, USA). As a clinical assessment, tracheal swabs were sampled from turkeys showing RS and submitted to this panel assay. Beside systematic detection of E. coli, avian metapneumovirus, Mycoplasma gallisepticum and Mycoplasma synoviae were frequently detected, with distinctive co-infection patterns between French and Moroccan flocks. This proof-of-concept study illustrates the potential of such panel assays for unveiling respiratory co-infection profiles in poultry.


Assuntos
Galinhas/microbiologia , Coinfecção/veterinária , Doenças das Aves Domésticas/diagnóstico , Reação em Cadeia da Polimerase em Tempo Real/veterinária , Infecções Respiratórias/veterinária , Perus/microbiologia , Animais , Primers do DNA/genética , Ensaios de Triagem em Larga Escala , Aves Domésticas , Doenças das Aves Domésticas/microbiologia , Infecções Respiratórias/diagnóstico , Infecções Respiratórias/microbiologia
16.
Avian Pathol ; 47(3): 314-324, 2018 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-29517282

RESUMO

Respiratory diseases are responsible for major economic losses in poultry farms. While in most cases a single pathogen is not alone responsible for the clinical outcome, the impact of co-infections is not well known, especially in turkeys. The purpose of this study was to assess the possible synergism between Escherichia coli (O78) and low pathogenic avian influenza virus (LPAIV, H6N1), in the turkey model. Four-week-old commercial turkeys were inoculated with either H6N1, O78 or both agents simultaneously or three days apart. We have established an experimental infection model of turkeys using aerosolization that better mimics field infections. Birds were observed clinically and swabbed on a daily basis. Necropsies were performed at 4 and 14 days post single or dual inoculation and followed by histological and immunohistochemical analyses. Combined LPAIV/E. coli infections resulted in more severe clinical signs, were associated with higher mortality and respiratory organ lesions (mucous or fibrinous exudative material in lungs and air sacs), in comparison with the groups given single infections (P < 0.05). The time interval or the sequence between H6N1 and E. coli inoculation (none or three days) did not have a significant effect on the outcome of the dual infection and disease although slightly greater (P > 0.05) respiratory signs were observed in turkeys of the E. coli followed by H6N1 inoculated group. Microscopic lesions and immunohistochemical staining supported clinical and macroscopic findings. Efficient virus and bacteria replication was observed in all inoculated groups. E. coli and H6N1 thus exercise an additive or synergistic pathogenic effect in the reproduction of respiratory disease.


Assuntos
Infecções por Escherichia coli/veterinária , Escherichia coli/fisiologia , Vírus da Influenza A/fisiologia , Influenza Aviária/virologia , Doenças das Aves Domésticas/microbiologia , Perus/microbiologia , Animais , Coinfecção/veterinária , Infecções por Escherichia coli/microbiologia , Infecções por Escherichia coli/mortalidade , Infecções por Escherichia coli/patologia , Feminino , Influenza Aviária/mortalidade , Influenza Aviária/patologia , Masculino , Doenças das Aves Domésticas/mortalidade , Doenças das Aves Domésticas/patologia
18.
J Virol ; 90(17): 7647-56, 2016 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-27279619

RESUMO

UNLABELLED: We have previously shown that 11 patients became naturally coinfected with seasonal H1N1 (A/H1N1) and pandemic H1N1 (pdm/H1N1) during the Southern hemisphere winter of 2009 in New Zealand. Reassortment of influenza A viruses is readily observed during coinfection of host animals and in vitro; however, reports of reassortment occurring naturally in humans are rare. Using clinical specimen material, we show reassortment between the two coinfecting viruses occurred with high likelihood directly in one of the previously identified patients. Despite the lack of spread of these reassortants in the community, we did not find them to be attenuated in several model systems for viral replication and virus transmission: multistep growth curves in differentiated human bronchial epithelial cells revealed no growth deficiency in six recovered reassortants compared to A/H1N1 and pdm/H1N1 isolates. Two reassortant viruses were assessed in ferrets and showed transmission to aerosol contacts. This study demonstrates that influenza virus reassortants can arise in naturally coinfected patients. IMPORTANCE: Reassortment of influenza A viruses is an important driver of virus evolution, but little has been done to address humans as hosts for the generation of novel influenza viruses. We show here that multiple reassortant viruses were generated during natural coinfection of a patient with pandemic H1N1 (2009) and seasonal H1N1 influenza A viruses. Though apparently fit in model systems, these reassortants did not become established in the wider population, presumably due to herd immunity against their seasonal H1 antigen.


Assuntos
Coinfecção/virologia , Vírus da Influenza A Subtipo H1N1/crescimento & desenvolvimento , Vírus da Influenza A Subtipo H1N1/genética , Influenza Humana/virologia , Vírus Reordenados/crescimento & desenvolvimento , Vírus Reordenados/genética , Animais , Modelos Animais de Doenças , Células Epiteliais/virologia , Furões , Humanos , Vírus da Influenza A Subtipo H1N1/isolamento & purificação , Nova Zelândia , Infecções por Orthomyxoviridae/transmissão , Infecções por Orthomyxoviridae/virologia , Fenótipo , Vírus Reordenados/isolamento & purificação , Virulência , Replicação Viral
19.
Virol J ; 13(1): 140, 2016 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-27527708

RESUMO

BACKGROUND: H9N2 avian influenza viruses continue to spread in poultry and wild birds worldwide. Morocco just faced its first H9N2 influenza virus outbreaks early 2016 affecting different types of poultry production. After its introduction, the virus spread very rapidly throughout the country. METHODS: Samples were collected from 11 chicken flocks with high morbidity and mortality rates. Four viruses were successfully isolated from broiler chickens and one from broiler breeders and fully sequenced. RESULTS: Phylogenetic and molecular markers analyses showed the Moroccan viruses belonged to the G1 lineage and likely originated from the Middle East. As known for H9N2 viruses, the Moroccanisolates possess several genetic markers that enhance virulence in poultry and transmission to humans. CONCLUSION: The present study demonstrated that under field conditions H9N2 could have a devastating effect on egg production and mortalities and highlighted a lack of surveillance data on the pathogen in the region.


Assuntos
Surtos de Doenças , Vírus da Influenza A Subtipo H9N2/isolamento & purificação , Influenza Aviária/epidemiologia , Influenza Aviária/virologia , Animais , Análise por Conglomerados , Genótipo , Vírus da Influenza A Subtipo H9N2/classificação , Vírus da Influenza A Subtipo H9N2/genética , Influenza Aviária/patologia , Marrocos/epidemiologia , Filogenia , Aves Domésticas , Análise de Sequência de DNA , Homologia de Sequência
20.
Avian Pathol ; 45(5): 602-3, 2016 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-27647350

RESUMO

Viruses within the Coronaviridae family show variations within their genome sequences, especially within the major structural protein the Spike (S) glycoprotein gene. Therefore, many different antigenic forms, serotypes or variant strains of avian coronaviruses (AvCoV) exist worldwide. Only a few of them, the so called protectotypes, cross protect against different serotypes. New serotypes arise by recombination or spontaneous mutations. From time to time, antigenic virus variants appear, which differ significantly from known serotypes. The result of this variability is an inconsistent nomenclature and classification of virus strains. Furthermore, there are currently no standard classification methods defined. Within the framework of the COST Action FA1207 "Towards control of avian coronaviruses: strategies for diagnosis, surveillance and vaccination" (working groups "Molecular virology" and "Epidemiology"), we aimed at defining and developing a unified and internationally standardized nomenclature and classification of AvCoVs. We recommend the use of "CoV Genus/AvCov/host/country/specimen id/year" to refer to AvCoV strains.


Assuntos
Doenças das Aves/virologia , Infecções por Coronavirus/veterinária , Coronavirus/classificação , Genoma Viral/genética , Terminologia como Assunto , Animais , Doenças das Aves/diagnóstico , Doenças das Aves/prevenção & controle , Coronavirus/genética , Infecções por Coronavirus/diagnóstico , Infecções por Coronavirus/prevenção & controle , Infecções por Coronavirus/virologia , União Europeia , Vacinação/veterinária
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA