Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 36
Filtrar
1.
Nucleic Acids Res ; 50(15): 8719-8732, 2022 08 26.
Artigo em Inglês | MEDLINE | ID: mdl-35947691

RESUMO

Many essential cellular processes rely on substrate rotation or translocation by a multi-subunit, ring-type NTPase. A large number of double-stranded DNA viruses, including tailed bacteriophages and herpes viruses, use a homomeric ring ATPase to processively translocate viral genomic DNA into procapsids during assembly. Our current understanding of viral DNA packaging comes from three archetypal bacteriophage systems: cos, pac and phi29. Detailed mechanistic understanding exists for pac and phi29, but not for cos. Here, we reconstituted in vitro a cos packaging system based on bacteriophage HK97 and provided a detailed biochemical and structural description. We used a photobleaching-based, single-molecule assay to determine the stoichiometry of the DNA-translocating ATPase large terminase. Crystal structures of the large terminase and DNA-recruiting small terminase, a first for a biochemically defined cos system, reveal mechanistic similarities between cos and pac systems. At the same time, mutational and biochemical analyses indicate a new regulatory mechanism for ATPase multimerization and coordination in the HK97 system. This work therefore establishes a framework for studying the evolutionary relationships between ATP-dependent DNA translocation machineries in double-stranded DNA viruses.


Assuntos
Adenosina Trifosfatases , Montagem de Vírus , Adenosina Trifosfatases/genética , Adenosina Trifosfatases/química , Montagem de Vírus/genética , Proteínas Virais/genética , Proteínas Virais/química , Empacotamento do DNA , Endodesoxirribonucleases/genética , Endodesoxirribonucleases/química , DNA Viral/genética , DNA Viral/química
2.
Proc Natl Acad Sci U S A ; 116(42): 21037-21046, 2019 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-31578255

RESUMO

The large (90-nm) icosahedral capsid of bacteriophage T5 is composed of 775 copies of the major capsid protein (mcp) together with portal, protease, and decoration proteins. Its assembly is a regulated process that involves several intermediates, including a thick-walled round precursor prohead that expands as the viral DNA is packaged to yield a thin-walled and angular mature capsid. We investigated capsid maturation by comparing cryoelectron microscopy (cryo-EM) structures of the prohead, the empty expanded capsid both with and without decoration protein, and the virion capsid at a resolution of 3.8 Å for the latter. We detail the molecular structure of the mcp, its complex pattern of interactions, and their evolution during maturation. The bacteriophage T5 mcp is a variant of the canonical HK97-fold with a high level of plasticity that allows for the precise assembly of a giant macromolecule and the adaptability needed to interact with other proteins and the packaged DNA.

3.
Nature ; 458(7238): 646-50, 2009 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-19204733

RESUMO

Lambda-like double-stranded (ds) DNA bacteriophage undergo massive conformational changes in their capsid shell during the packaging of their viral genomes. Capsid shells are complex organizations of hundreds of protein subunits that assemble into intricate quaternary complexes that ultimately are able to withstand over 50 atm of pressure during genome packaging. The extensive integration between subunits in capsids requires the formation of an intermediate complex, termed a procapsid, from which individual subunits can undergo the necessary refolding and structural rearrangements needed to transition to the more stable capsid. Although various mature capsids have been characterized at atomic resolution, no such procapsid structure is available for a dsDNA virus or bacteriophage. Here we present a procapsid X-ray structure at 3.65 A resolution, termed prohead II, of the lambda-like bacteriophage HK97, the mature capsid structure of which was previously solved to 3.44 A (ref. 2). A comparison of the two largely different capsid forms has unveiled an unprecedented expansion mechanism that describes the transition. Crystallographic and hydrogen/deuterium exchange data presented here demonstrate that the subunit tertiary structures are significantly different between the two states, with twisting and bending motions occurring in both helical and beta-sheet regions. We also identified subunit interactions at each three-fold axis of the capsid that are maintained throughout maturation. The interactions sustain capsid integrity during subunit refolding and provide a fixed hinge from which subunits undergo rotational and translational motions during maturation. Previously published calorimetric data of a closely related bacteriophage, P22, showed that capsid maturation was an exothermic process that resulted in a release of 90 kJ mol(-1) of energy. We propose that the major tertiary changes presented in this study reveal a structural basis for an exothermic maturation process probably present in many dsDNA bacteriophage and possibly viruses such as herpesvirus, which share the HK97 subunit fold.


Assuntos
Capsídeo/química , Capsídeo/metabolismo , Siphoviridae/química , Siphoviridae/crescimento & desenvolvimento , Montagem de Vírus , Proteínas do Capsídeo/química , Proteínas do Capsídeo/genética , Proteínas do Capsídeo/metabolismo , Cristalografia por Raios X , Medição da Troca de Deutério , Modelos Moleculares , Movimento , Conformação Proteica , Dobramento de Proteína , Multimerização Proteica , Subunidades Proteicas/química , Subunidades Proteicas/metabolismo , Siphoviridae/genética , Termodinâmica
4.
Sci Adv ; 9(24): eadg8868, 2023 06 16.
Artigo em Inglês | MEDLINE | ID: mdl-37327331

RESUMO

Tailed bacteriophages and herpesviruses use a transient scaffold to assemble icosahedral capsids with hexameric capsomers on the faces and pentameric capsomers at all but one vertex where a 12-fold portal is thought to nucleate the assembly. How does the scaffold orchestrate this step? We have determined the portal vertex structure of the bacteriophage HK97 procapsid, where the scaffold is a domain of the major capsid protein. The scaffold forms rigid helix-turn-strand structures on the interior surfaces of all capsomers and is further stabilized around the portal, forming trimeric coiled-coil towers, two per surrounding capsomer. These 10 towers bind identically to 10 of 12 portal subunits, adopting a pseudo-12-fold organization that explains how the symmetry mismatch is managed at this early step.


Assuntos
Bacteriófagos , Bacteriófagos/metabolismo , Capsídeo/química , Proteínas do Capsídeo/química , Domínios Proteicos
5.
J Virol ; 83(5): 2088-98, 2009 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-19091865

RESUMO

The capsid of bacteriophage HK97 is stabilized by approximately 400 covalent cross-links between subunits which form without any action by external enzymes or cofactors. Cross-linking only occurs in fully assembled particles after large-scale structural changes bring together side chains from three subunits at each cross-linking site. Isopeptide cross-links form between asparagine and lysine side chains on two subunits. The carboxylate of glutamic acid 363 (E363) from a third subunit is found approximately 2.4 A from the isopeptide bond in the partly hydrophobic pocket that contains the cross-link. It was previously reported without supporting data that changing E363 to alanine abolishes cross-linking, suggesting that E363 plays a role in cross-linking. This alanine mutant and six additional substitutions for E363 were fully characterized and the proheads produced by the mutants were tested for their ability to cross-link under a variety of conditions. Aspartic acid and histidine substitutions supported cross-linking to a significant extent, while alanine, asparagine, glutamine, and tyrosine did not, suggesting that residue 363 acts as a proton acceptor during cross-linking. These results support a chemical mechanism, not yet fully tested, that incorporates this suggestion, as well as features of the structure at the cross-link site. The chemically identical isopeptide bonds recently documented in bacterial pili have a strikingly similar chemical geometry at their cross-linking sites, suggesting a common chemical mechanism with the phage protein, but the completely different structures and folds of the two proteins argues that the phage capsid and bacterial pilus proteins have achieved shared cross-linking chemistry by convergent evolution.


Assuntos
Proteínas do Capsídeo/metabolismo , Capsídeo/metabolismo , Colífagos/genética , Ácido Glutâmico/metabolismo , Substituição de Aminoácidos , Proteínas do Capsídeo/genética , Colífagos/metabolismo , Colífagos/fisiologia , Colífagos/ultraestrutura , Reagentes de Ligações Cruzadas , Teste de Complementação Genética , Concentração de Íons de Hidrogênio , Mutagênese , Dodecilsulfato de Sódio , Montagem de Vírus
6.
Structure ; 16(6): 831-2, 2008 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-18547513

RESUMO

Tang et al. (2008) probe the virion structure of bacteriophage phi29 by asymmetric reconstructions of cryo-electron microscopy images, visualizing subunit conformations, protein-DNA interactions, and a novel twist of dsDNA that may aid in retention of the genome prior to ejection.


Assuntos
Fagos Bacilares/ultraestrutura , Vírion/química , Vírion/ultraestrutura , Fagos Bacilares/genética , Microscopia Crioeletrônica , DNA Viral/química , Processamento de Imagem Assistida por Computador
7.
Structure ; 16(10): 1491-502, 2008 Oct 08.
Artigo em Inglês | MEDLINE | ID: mdl-18940605

RESUMO

The capsids of tailed-DNA bacteriophages first assemble as procapsids, which mature by converting into a new form that is strong enough to contain a densely packed viral chromosome. We demonstrate that the intersubunit crosslinking that occurs during maturation of HK97 capsids actually promotes the structural transformation. Small-angle X-ray scattering and crosslinking assays reveal that a shift in the crosslink pattern accompanies conversion of a semimature particle, Expansion Intermediate-I/II, to a more mature state, Balloon. This transition occurs in a switch-like fashion. We find that crosslink formation shifts the global conformational balance to favor the balloon state. A pseudoatomic model of EI-I/II derived from cryo-EM provides insight into the relationship between crosslink formation and conformational switching.


Assuntos
Proteínas do Capsídeo/química , Proteínas do Capsídeo/metabolismo , Montagem de Vírus/fisiologia , Modelos Biológicos , Modelos Moleculares , Movimento , Complexos Multiproteicos/química , Complexos Multiproteicos/metabolismo , Ligação Proteica , Estrutura Quaternária de Proteína , Estrutura Secundária de Proteína , Vírion/química , Vírion/metabolismo
8.
J Mol Biol ; 432(7): 2015-2029, 2020 03 27.
Artigo em Inglês | MEDLINE | ID: mdl-32035900

RESUMO

The portal proteins of tailed bacteriophage and Herpesvirus capsids form dodecameric rings that occupy one capsid vertex and are incorporated during the assembly of capsid precursors called procapsids or proheads. Portals are essential and serve as the pore for DNA transit and the site of tail attachment; however, bacteriophage HK97 capsid proteins assemble efficiently without a portal when expressed from plasmids. Following portal co-expression, portals were incorporated into about half of the proheads that were made. In the absence of active capsid maturation protease, uncleaved proheads formed dimers, trimers, and tetramers of proheads during purification, but only if they had portals. These appeared bound to membrane-like fragments by their portals and could be disaggregated by detergents, supporting a role for membranes in their formation and in capsid assembly. The precursors to prohead oligomers were detected in cell extracts. These were able to bind to Octyl-Sepharose and could be released by detergent, while uncleaved proheads without portal or cleaved proheads with portal did not bind. Our results document a discrete change in the HK97 portal's hydrophobicity induced by cleavage of the procapsid shell in which it is embedded. Additionally, we detected an increase in the rate of expansion induced by the presence of a portal complex in cleaved HK97 proheads. These results suggest that portals and capsids influence each other's conformation during assembly. The formation of prohead oligomers also provides a rapid and sensitive assay for identification and analysis of portal incorporation mutants.


Assuntos
Bacteriófagos/metabolismo , Proteínas do Capsídeo/metabolismo , Capsídeo/metabolismo , Conformação Molecular , Proteínas Virais/metabolismo , Montagem de Vírus , Bacteriófagos/genética , Capsídeo/química , Proteínas do Capsídeo/química , Proteínas do Capsídeo/genética , Modelos Moleculares , Proteínas Virais/genética
9.
J Mol Biol ; 432(2): 384-395, 2020 01 17.
Artigo em Inglês | MEDLINE | ID: mdl-31711962

RESUMO

The long flexible tail tube of bacteriophage lambda connects its capsid to the tail tip. On infection, a DNA ejection signal is passed from the tip, along the tube to the capsid that triggers passage of the DNA down the tube and into the host bacterium. The tail tube is built from repeating units of the major tail protein, gpV, which has two distinctive domains. Its N-terminal domain has the same fold as proteins that form the rigid inner tubes of contractile tail phages, such as T4, and its C-terminal domain adopt an Ig-like fold of unknown function. We determined structures of the lambda tail tube in free tails and in virions before and after DNA ejection using cryoelectron microscopy. Modeling of the density maps reveals how electrostatic interactions and a mobile loop participate in assembly and also impart flexibility to the tube while maintaining its integrity. We also demonstrate how a common protein fold produces rigid tubes in some phages but flexible tubes in others.


Assuntos
Bacteriófago lambda/ultraestrutura , Proteínas do Capsídeo/ultraestrutura , Siphoviridae/ultraestrutura , Proteínas da Cauda Viral/ultraestrutura , Sequência de Aminoácidos/genética , Bacteriófago lambda/genética , Capsídeo/química , Capsídeo/ultraestrutura , Proteínas do Capsídeo/genética , Microscopia Crioeletrônica , Modelos Moleculares , Siphoviridae/genética , Eletricidade Estática , Proteínas da Cauda Viral/genética , Vírion/genética , Vírion/ultraestrutura
10.
Curr Opin Virol ; 36: 9-16, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-30856581

RESUMO

dsDNA Bacteriophages, some dsDNA archaeal viruses and the Herpesviruses share many features including a common capsid assembly pathway and coat protein fold. The coat proteins of these viruses, which have the HK97 fold, co-assemble with a free or attached scaffolding protein and other capsid proteins into a precursor capsid, known as a procapsid or prohead. The procapsid is a metastable state that increases in stability as a result of morphological changes that occur during the dsDNA packaging reaction. We review evidence from several systems indicating that proper contacts acquired in the assembly of the procapsid are critical to forming the correct morphology in the mature capsid.


Assuntos
Vírus de Archaea/química , Bacteriófagos/química , Proteínas do Capsídeo/química , Capsídeo/química , Herpesviridae/química , Modelos Moleculares , Dobramento de Proteína
11.
Structure ; 14(11): 1655-65, 2006 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-17098191

RESUMO

Maturation of the bacteriophage HK97 capsid from a precursor (Prohead II) to the mature state (Head II) involves a 60 A radial expansion. The mature particle is formed by 420 copies of the major capsid protein organized on a T = 7 laevo lattice with each subunit covalently crosslinked to two neighbors. Well-characterized pH 4 expansion intermediates make HK97 valuable for investigating quaternary structural dynamics. Here, we use X-ray crystallography and cryo-EM to demonstrate that in the final transition in maturation (requiring neutral pH), pentons in Expansion Intermediate IV (EI-IV) reversibly sample 14 A translations and 6 degrees rotations relative to a fixed hexon lattice. The limit of this trajectory corresponds to the Head II conformation that is secured at this extent only by the formation of the final class of covalent crosslinks. Mutants that cannot crosslink or EI-IV particles that have been rendered incapable of forming the final crosslink remain in the EI-IV state.


Assuntos
Capsídeo/química , Microscopia Crioeletrônica/métodos , Cristalografia por Raios X/métodos , Bacteriófago lambda/química , Reagentes de Ligações Cruzadas/farmacologia , Cristalização , Elétrons , Concentração de Íons de Hidrogênio , Modelos Moleculares , Conformação Molecular , Estrutura Molecular , Conformação Proteica , Dobramento de Proteína , Montagem de Vírus
12.
J Mol Biol ; 364(3): 512-25, 2006 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-17007875

RESUMO

We investigated the thermodynamic basis of HK97 assembly by scanning calorimetry and cryo-electron microscopy. This pathway involves self-assembly of hexamers and pentamers of the precursor capsid protein gp5 into procapsids; proteolysis of their N-terminal Delta-domains; expansion, a major conformational change; and covalent crosslinking. The thermal denaturation parameters convey the changes in stability at successive steps in assembly, and afford estimates of the corresponding changes in free energy. The procapsid represents a kinetically accessible local minimum of free energy. In maturation, it progresses to lower minima in a cascade punctuated by irreversible processes ("locks"), i.e. proteolysis and crosslinking, that lower kinetic barriers and prevent regression. We infer that Delta-domains not only guide assembly but also restrain the procapsid from premature expansion; their removal by proteolysis is conducive to initiating expansion and to its proceeding to completion. We also analyzed the mutant E219K, whose capsomers reassemble in vitro into procapsids with vacant vertices called "whiffleballs". E219K assemblies all have markedly reduced stability compared to wild-type gp5 (DeltaT(p) approximately -7 degrees C to -10 degrees C; where T(p) is the denaturation temperature). As the mutated residue is buried in the core of gp5, we attribute the observed reduction in stability to steric and electrostatic perturbations of the packing of side-chains in the subunit interior. To explain the whiffleball phenotype, we suggest that these effects propagate to the capsomer periphery in such a way as to differentially affect the stability or solubility of dissociated pentamers, leaving only hexamers to reassemble.


Assuntos
Bacteriófagos/fisiologia , Proteínas do Capsídeo/metabolismo , Capsídeo/fisiologia , Modelos Moleculares , Bacteriófagos/metabolismo , Bacteriófagos/ultraestrutura , Varredura Diferencial de Calorimetria , Capsídeo/metabolismo , Capsídeo/ultraestrutura , Proteínas do Capsídeo/ultraestrutura , Microscopia Crioeletrônica , Mutação , Estrutura Terciária de Proteína , Termodinâmica
13.
J Mol Biol ; 429(16): 2474-2489, 2017 08 04.
Artigo em Inglês | MEDLINE | ID: mdl-28705762

RESUMO

Viruses build icosahedral capsids of specific size and shape by regulating the spatial arrangement of the hexameric and pentameric protein capsomers in the growing shell during assembly. In the T=7 capsids of Escherichia coli bacteriophage HK97 and other phages, 60 capsomers are hexons, while the rest are pentons that are correctly positioned during assembly. Assembly of the HK97 capsid to the correct size and shape has been shown to depend on specific ionic contacts between capsomers. We now describe additional ionic interactions within capsomers that also regulate assembly. Each is between the long hairpin, the "E-loop," that extends from one subunit to the adjacent subunit within the same capsomer. Glutamate E153 on the E-loop and arginine R210 on the adjacent subunit's backbone alpha-helix form salt bridges in hexamers and pentamers. Mutations that disrupt these salt bridges were lethal for virus production, because the mutant proteins assembled into tubes or sheets instead of capsids. X-ray structures show that the E153-R210 links are flexible and maintained during maturation despite radical changes in capsomer shape. The E153-R210 links appear to form early in assembly to enable capsomers to make programmed changes in their shape during assembly. The links also prevent flattening of capsomers and premature maturation. Mutant phenotypes and modeling support an assembly model in which flexible E153-R210 links mediate capsomer shape changes that control where pentons are placed to create normal-sized capsids. The E-loop may be conserved in other systems in order to play similar roles in regulating assembly.


Assuntos
Proteínas do Capsídeo/metabolismo , Colífagos/fisiologia , Multimerização Proteica , Montagem de Vírus , Capsídeo/química , Capsídeo/metabolismo , Cristalografia por Raios X , Modelos Moleculares , Ligação Proteica
14.
Virology ; 506: 84-91, 2017 06.
Artigo em Inglês | MEDLINE | ID: mdl-28359902

RESUMO

During maturation of the phage HK97 capsid, each of the 415 capsid subunits forms covalent bonds to neighboring subunits, stabilizing the capsid. Crosslinking is catalyzed not by a separate enzyme but by subunits of the assembled capsid in response to conformational rearrangements during maturation. This report investigates the catalytic mechanism. Earlier work established that the crosslinks are isopeptide (amide) bonds between side chains of a lysine on one subunit and an asparagine on another subunit, aided by a catalytic glutamate on a third subunit. The mature capsid structure suggests that the reaction may be facilitated by the arrival of a valine with the lysine to complete a hydrophobic pocket surrounding the glutamate, lysine and asparagine. We show that this valine has an essential role for efficient crosslinking, and that any of six other amino acids can successfully substitute for valine. Evidently none of the remaining 13 amino acids will work.


Assuntos
Bacteriófagos/química , Capsídeo/química , Bacteriófagos/fisiologia , Capsídeo/metabolismo , Proteínas do Capsídeo/química , Proteínas do Capsídeo/metabolismo , Modelos Moleculares , Montagem de Vírus
15.
mBio ; 8(5)2017 10 17.
Artigo em Inglês | MEDLINE | ID: mdl-29042498

RESUMO

Large icosahedral viruses that infect bacteria represent an extreme of the coevolution of capsids and the genomes they accommodate. One subset of these large viruses is the jumbophages, tailed phages with double-stranded DNA genomes of at least 200,000 bp. We explored the mechanism leading to increased capsid and genome sizes by characterizing structures of several jumbophage capsids and the DNA packaged within them. Capsid structures determined for six jumbophages were consistent with the canonical phage HK97 fold, and three had capsid geometries with novel triangulation numbers (T=25, T=28, and T=52). Packaged DNA (chromosome) sizes were larger than the genome sizes, indicating that all jumbophages use a head-full DNA packaging mechanism. For two phages (PAU and G), the sizes appeared very much larger than their genome length. We used two-dimensional DNA gel electrophoresis to show that these two DNAs migrated abnormally due to base modifications and to allow us to calculate their actual chromosome sizes. Our results support a ratchet model of capsid and genome coevolution whereby mutations lead to increased capsid volume and allow the acquisition of additional genes. Once the added genes and larger capsid are established, mutations that restore the smaller size are disfavored.IMPORTANCE A large family of viruses share the same fold of the capsid protein as bacteriophage HK97, a virus that infects bacteria. Members of this family use different numbers of the capsid protein to build capsids of different sizes. Here, we examined the structures of extremely large capsids and measured their DNA content relative to the sequenced genome lengths, aiming to understand the process that increases size. We concluded that mutational changes leading to larger capsids become locked in by subsequent changes to the genome organization.


Assuntos
Bacteriófagos/genética , Bacteriófagos/ultraestrutura , Evolução Biológica , Capsídeo/ultraestrutura , Genoma Viral , DNA Viral/genética , Eletroforese em Gel Bidimensional , Mutação
16.
J Mol Biol ; 348(1): 167-82, 2005 Apr 22.
Artigo em Inglês | MEDLINE | ID: mdl-15808861

RESUMO

The capsid of Escherichia coli bacteriophage HK97 assembles as a 420 subunit icosahedral shell called Prohead I which undergoes a series of maturation steps, including proteolytic cleavage, conformational rearrangements, and covalent cross-linking among all the subunits to yield the highly stable mature Head II shell. Prohead I have been shown to assemble from pre-formed hexamers and pentamers of the capsid protein subunit. We report here the properties of a mutant of the capsid protein, E219K, which illuminate the assembly of Prohead I. The mutant capsid protein is capable of going through all of the biochemically and morphologically defined steps of capsid maturation, and when it is expressed by itself from a plasmid it assembles efficiently into a Prohead I that is morphologically indistinguishable from the wild-type Prohead I, with a full complement of both hexamers and pentamers. Unlike the wild-type Prohead I, when the mutant structure is dissociated into capsomers in vitro, only hexamers are found. When such preparations are put under assembly conditions, these mutant hexamers assemble into "Whiffleballs", particles that are identical with Prohead I except that they are missing the 12 pentamers. These Whiffleballs can even be converted to Prohead I by specifically binding wild-type pentamers. We argue that the ability of the mutant hexamers to assemble in the absence of pentamers implies that they retain a memory of their earlier assembled state, most likely as a conformational difference relative to assembly-naive hexamers. The data therefore favor a model in which Prohead I assembly is regulated by conformational switching of the hexamer.


Assuntos
Bacteriófagos/metabolismo , Proteínas do Capsídeo , Capsídeo/química , Conformação Proteica , Montagem de Vírus , Capsídeo/metabolismo , Capsídeo/ultraestrutura , Proteínas do Capsídeo/química , Proteínas do Capsídeo/genética , Proteínas do Capsídeo/metabolismo , Proteínas do Capsídeo/ultraestrutura , Microscopia Crioeletrônica , Modelos Moleculares
17.
J Mol Biol ; 352(3): 723-35, 2005 Sep 23.
Artigo em Inglês | MEDLINE | ID: mdl-16095623

RESUMO

The complex protein capsids of many viruses exhibit dramatic reorganizations at critical stages in their life-cycle. Here, time-resolved solution X-ray scattering was used to study a dynamic, large-scale conformational maturation of the 420 subunit, 13 MDa, icosahedrally symmetric HK97 bacteriophage capsid. Isoscattering points in the time-resolved scattering patterns and singular value decomposition revealed that the expansion occurs as a cooperative, two-state reaction. The analysis demonstrates that the population shift from Prohead-II to Expansion Intermediate I, EI-I (60 A larger than Prohead-II) occurs in minutes, but does not reveal the time required for individual transitions that occur stochastically. Any intermediate forms that may be traversed during this conversion are unstable and do not constitute an appreciable population of the ensemble of particles. In an energetic landscape view, particles must undergo an energy barrier-crossing event in order to successfully convert from Prohead-II to EI-I. This implies that the particles "hop" over the energy barrier stochastically as they individually attain an expansion-active state. Interestingly, systematic deviations from single-exponential kinetics were observed for the population shift. This may indicate that in undergoing the irreversible conversion from Prohead-II to EI-I, particles are subject to a complex energy landscape that links the initial and final particle forms.


Assuntos
Proteínas do Capsídeo/química , Siphoviridae/química , Proteínas do Capsídeo/genética , Cinética , Modelos Moleculares , Estrutura Quaternária de Proteína , Subunidades Proteicas , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Espalhamento de Radiação , Siphoviridae/genética , Siphoviridae/fisiologia , Montagem de Vírus
18.
J Mol Biol ; 428(1): 165-181, 2016 Jan 16.
Artigo em Inglês | MEDLINE | ID: mdl-26616586

RESUMO

The 90-nm-diameter capsid of coliphage T5 is organized with T=13 icosahedral geometry and encloses a double-stranded DNA genome that measures 121kbp. Its assembly follows a path similar to that of phage HK97 but yielding a larger structure that includes 775 subunits of the major head protein, 12 subunits of the portal protein and 120 subunits of the decoration protein. As for phage HK97, T5 encodes the scaffold function as an N-terminal extension (∆-domain) to the major head protein that is cleaved by the maturation protease after assembly of the initial prohead I form and prior to DNA packaging and capsid expansion. Although the major head protein alone is sufficient to assemble capsid-like particles, the yield is poor and includes many deformed structures. Here we explore the role of both the portal and the protease in capsid assembly by generating constructs that include the major head protein and a combination of protease (wild type or an inactive mutant) and portal proteins and overexpressing them in Escherichia coli. Our results show that the inactive protease mutant acts to trigger assembly of the major head protein, probably through binding to the ∆-domain, while the portal protein regulates assembly into the correct T=13 geometry. A cryo-electron microscopy reconstruction of prohead I including inactivated protease reveals density projecting from the prohead interior surface toward its center that is compatible with the ∆-domain, as well as additional internal density that we assign as the inactivated protease. These results reveal complexity in T5 beyond that of the HK97 system.


Assuntos
Siphoviridae/fisiologia , Proteínas Virais/metabolismo , Montagem de Vírus , Microscopia Crioeletrônica , Análise Mutacional de DNA , Escherichia coli/genética , Escherichia coli/virologia , Siphoviridae/ultraestrutura , Proteínas Virais/genética
19.
J Mol Biol ; 340(3): 419-33, 2004 Jul 09.
Artigo em Inglês | MEDLINE | ID: mdl-15210344

RESUMO

Bacteriophage capsids are a striking example of a robust yet dynamic genome delivery vehicle. Like most phages, HK97 undergoes a conformational maturation that converts a metastable Prohead into the mature Head state. In the case of HK97, maturation involves a significant expansion of the capsid and concomitant cross-linking of capsid subunits. The final state, termed Head-II, is a 600 angstroms diameter icosahedral structure with catenated subunit rings. Cryo-EM, small angle X-ray scattering (SAXS), and biochemical assays were used previously to characterize the initial (Prohead-II) and final states (Head-II) as well as four maturation intermediates. Here we extend the characterization of the acid-induced expansion of HK97 in vitro by monitoring changes in intrinsic fluorescence, circular dichroism (CD), and SAXS. We find that the greatest changes in all observables occur at an early stage of maturation. Upon acidification, fluorescence emissions from HK97 exhibit a blueshift and decrease in intensity. These spectral changes reveal two kinetic phases of the expansion reaction. The early phase exhibits sensitivity to pH, increasing in rate nearly 200-fold when acidification pH is lowered from 4.5 to 3.9. The second, slower phase reported by fluorescence is relatively insensitive to pH. Time-resolved SAXS experiments report an increase in overall particle dimension that parallels the fluorescence changes for the early phase. Native agarose gel assays corroborated this finding. By contrast, probes of CD at far-UV indicate that secondary structural changes precede the early expansion phase reported by SAXS and fluorescence. Based on the crystallographic structure of Head-II and the pseudo-atomic model of Prohead-II, we interpret these changes as reflecting the conversion of subunit N-terminal arms (N-arm) from unstructured polypeptide to the mixture of beta-strand and beta-turn observed in the Head-II crystal structure. Refolding of the N-arm may thus represent the conformational trigger that initiates the irreversible expansion of the phage capsid.


Assuntos
Bacteriófagos/metabolismo , Capsídeo/metabolismo , Capsídeo/química , Dicroísmo Circular , Eletroforese em Gel de Ágar , Cinética , Modelos Moleculares , Dobramento de Proteína , Espalhamento de Radiação , Espectrometria de Fluorescência , Espectrofotometria Ultravioleta
20.
J Mol Biol ; 334(5): 885-99, 2003 Dec 12.
Artigo em Inglês | MEDLINE | ID: mdl-14643655

RESUMO

The HK97 bacteriophage capsid is a unique example of macromolecular catenanes: interlocked rings of covalently attached protein subunits. The chain mail organization of the subunits stabilizes a particle in which the maximum thickness of the protein shell is 18A and the maximum diameter is 550A. The electron density has the appearance of a balloon illustrating the extraordinary strength conferred by the unique subunit organization. The refined structure shows novel qualities of the HK97 shell protein, gp5 that, together with the protease gp4, guides the assembly and maturation of the virion. Although gp5 forms hexamers and pentamers and the subunits exist in different structural environments, the tertiary structures of the seven protein molecules in the viral asymmetric unit are closely similar. The interactions of the subunits in the shell are exceptionally complex with each subunit interacting with nine other subunits. The interactions of the N-terminus released after gp5 cleavage appear important for organization of the loops that become crosslinked to the core of a neighboring subunit at the maturation. A comparison with a model of the Prohead II structure revealed that the surfaces of non-covalent contact between the monomers that build up hexamers/pentamers are completely redefined during maturation.


Assuntos
Bacteriófagos/química , Capsídeo/química , Sequência de Aminoácidos , Modelos Moleculares , Dados de Sequência Molecular , Conformação Proteica , Homologia de Sequência de Aminoácidos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA